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SIMULATION AND ANALYSIS OF A GEOPOTENTIAL RESEARCH MISSION

Abstract

The Geopotential Research Mission (GRM) is a proposed mission that uses two

satellites in nearly identical orbits to determine the Earth's geopotential field using

measurements of relative range rate between the two satellites. In the current proposal,

the satellites will be in polar orbits, at an altitude of 160 kilometers, but separated by

several hundred kilometers. A drag compensation system will be used to eliminate the

nonconservative forces that affect the purely gravitational trajectories of the satellites.

This study has investigated methods for the determination of the initial

conditions for the two satellites that will satisfy the mission requirements. For certain

gravitational recovery techniques, the satellites must remain close to a specified

separation distance and their groundtracks must repeat after a specified interval of time.

Since the objective of the GRM mission is to improve the gravity model, any pre-

mission orbit predicted using existing gravity models will be in error. A technique has

been developed to eliminate the drift between the two satellites caused by gravitational

modeling errors and return them to repeating groundtracks. This technique is

independent of the geopotential field and other perturbations that might have been
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neglected in the pre-mission model.

The concept of "frozen orbits" was also investigated for possible GRM orbits.

A frozen orbit restricts the secular motion of the argument of perigee and removes the

long period changes of the eccentricity. This characteristic of the frozen orbit

minimizes the altitude variations over given latitudes on the Earth. Frozen orbits also

have the further advantage of more easily maintaining a repeating ground track.

The effects of temporal perturbations on the relative range-rate signal are also

investigated. At the proposed altitude of 160 km, the range-rate signal produced by

perturbations other than the static geopotential field are dominated by the luni-solar

effect. This study demonstrates that the combined effects of all the temporal

perturbations does not prevent the orbit from being frozen, nor do they prevent the

satellites from obtaining a repeating groundtrack to within the specified closure

distance.
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CHAP'IER 1

METHODS FOR THE RECOVERY OF THE GEOPOTENTIAL FIELD

1.1 Introduction

To improve the present knowledge of the Earth's gravity field, a mission

dedicated to the recovery of the geopotential field has been suggested. In 1978, the

National Academy of Science Committee on Geodesy suggested that two, low altitude,

polar satellites be studied as a method for the recovery of the Earth's gravity field

[National Academy of Science, 1979]. The primary goal of this mission, currently

known as the Geopotential Research Mission (GRM), would to produce a high

resolution global gravity field model of the Earth.

In the past, modem geopotential models of the Earth were tailored for a

particular satellite, thereby producing accurate results when tested on that particular

satellite, but less accurate results when applied to other satellites with different orbit

characteristics [Rapp, 1981]. There is a need for a global gravity model, not tuned for

a particular satellite, but one that would be useful for both terrestrial and satellite

applications. The rationale for the improvement in gravity field models will be

explained in this chapter.

The Earth's gravity field is nearly complete between ±70 ° latitude with a
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resolution of 1° [Lerch, Putney, Wagner and Klosko, 1981]. However, the best

resolution is mainly in the ocean areas, while much of the solid Earth area is

inadequately determined. Also, the shorter wavelength harmonics of the geopotential

field need to be discerned in order to observe the more detailed structure of the Earth's

surface and the mechanics of its motion. An accurate knowledge of the gravity field

will provide information on the internal structure of the Earth, as well as the surface

features. With improvements in the gravity model comes an improvement of the

Earth's geoid. The geoid is the mean sea level, or the shape the Earth would be if there

were no land masses and no tidal effects; it is a surface of constant gravitational

potential [Stewart, Lu and Lefebvre, 1986]. An accurate geoid provides clear

information on the general shape of the Earth.

Though more progress through better use of data already acquired can be made,

new techniques and refinements of old ones need to be devised for the improvement of

the global geopotential field. Since current methods for measuring the Earth's gravity

field are incapable of providing a high resolution, homogeneous, global geopotential

model [ESA, 1987], the proposed satellite mission dedicated to the recovery of the

Earth's gravity field will use an alternate method to those employed in the past.

Various methods have been proposed for this mission. The candidate methods include

satellite-borne gravity gradiometers, and satellite-to-satellite range-rate measurements

for high-low and low-low satellite configurations. The advantages and disadvantages

of each of these new methods along with a description of current techniques are

discussed in the following sections.
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1.2 Review of Gravity Field Models

Prior to the first Earth satellite launched in 1957, the determination of the

Earth's gravity field was restricted to surface gravimetry measurements [Lambeck and

Coleman, 1983]. With the use of satellites, more measurement data from various other

techniques could be applied to the knowledge of the Earth's geopotential field. Three

representative gravity models that are used in this study and that will be discussed in

this section are the Goddard Earth Model GEM10B, and the models provided by Ohio

State University, referred to as the OSU322 and the OSU86F fields.

For the past fifteen years, Goddard Earth Models have been under development

[Lambeck and Coleman, 1983]. The odd numbered gravity models computed by the

Goddard Space Flight Center, such as GEM 9, are based strictly upon satellite tracking

data. The even-numbered models differ from the odd-numbered models by the

inclusion of surface gravimetry data as well [Lerch, et al., 1981]. The accuracy of

these fields was assessed by Lerch, et al. [1981].

The Geodynarnic Experimental Ocean Satellite, GEOS-3, the fin'st unmanned

satellite to provide altimetry data, was an important source of information for the most

recent Goddard Earth Models. In 1977, the altimetry data from GEOS-3 was used to

improve the Goddard Earth Model GEM10 from a field complete through degree and

order 22 (22 x 22) to the more current GEM10B, a 36 x 36 geopotential field [Lerch

and Wagner, 1981].

Ohio State University (OSU) has been developing gravity models for the past
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twentyyears[Lambeckand Coleman, 1983]. In the creation of the latest OSU fields,

Rapp [1981] attempted not to tune the fields for a particular satellite, but instead

produce fields that were more representative of many satellites. The OSU322 field is

180 x 180 with some modifications that include terms to degree 300 [Rapp, 1981], and

OSU86F is a full 360 x 360 field [Rapp and Cruz, 1986]. Though these fields have

been expanded to over degree 180, the high degree and order harmonic coefficients

were determined mainly from surface gravimetry data [Rapp, 1981].

To obtain the f'mer structure of the Earth's gravity field, surface gravimetry data

must be included along with the satellite tracking observations. However, 100% errors

in the terms over degree 150 have been found. In addition, surface data does not cover

the entire globe, and because the actual acquisition of the data tends to vary, the data

from surface gravimetry measurements is not uniformly distributed [ESA, 1987].

The accuracy to which a satellite's orbit can be determined is sometimes used as

a criterion for evaluating certain geopotential models. It is desired, however, to have a

gravity field model that is a physical representation of the Earth, not one that produces

accurate motion for an individual satellite or even a group of satellites in similar orbits

[Lambeck and Coleman, 1983].

1.3 Ground Based Satellite Tracking

Until the introduction of satellite altimetry, models of the Earth's gravity field

were derived almost exclusively from ground based satellite tracking data and from

surface gravimetry data [Lerch, et al., 1981]. Satellite tracking data provide the longer
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wavelengthfeaturesof thegravity field, whereasthegravimetrydataprovidethefiner

details [Smith,Lerch, March, Wagner, Kolenkiewicz and Khan, 1976].

A satellite's sensitivity to certain geopotential coefficients is dependent upon its

orbit; consequently, to properly determine the gravity field, data from several satellites

that are at different altitudes and varying inclinations should be obtained [Lambeck and

Coleman, 1983]. In order to track the satellite's orbit, ground based tracking stations

must be available, and collectively must be able to track the satellite long enough to

enable determination of an accurate orbit. From satellite tracking observations only, the

gravity field can be determined up to degree and order 20 plus some additional zonal

harmonics [ESA, 1987], although the accuracy of the coefficients depends also on the

precision of the observations.

Over the years, the global satellite tracking networks have become more

extensive. Tracking networks have been established by the U.S. Navy (known as

TRANET), by the Smithsonian Astrophysical Observatory (SAO), and by Goddard

Space Flight Center (GSFC) [Torge, 1980]. These networks have more than a total of

200 stations around the globe, and are capable of measuring a sateUite's state using

laser, optical, electronic, and doppler observations.

Due to physical and political constraints, the ground based stations are not

placed uniformly around the Earth and, therefore, some geographic areas have very

sparse tracking data [Argentiero and Lowery, 1978]. The gravity models are more

accurate in areas where stations are located and large amounts of data can be

accumulated. The lack of global coverage and uniformity in tracking is a significant
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disadvantageof groundbasedtracking for thedeterminationof a high accuracyand

resolutiongravityfield. Thelimitationsindicatethatadditionalmeasurementtechniques

for therecoveryof theglobalgeopotentialfield mustbeemployed.

1.4 Satellite Altimetry

The satellite altimeter measures the distance between the satellite and the mean

ocean surface directly beneath it. The altimeter signal is transmitted from the satellite to

the ocean surface and received back at the satellite. The time required for the signal to

be sent and received again is a direct measurement of the satellite altitude above the

ocean surface. Because the geoid is a "global reference surface for height", an accurate

geoid is essential for some applications of altimetry measurements [Torge, 1980]. With

precise altimetry data, more detailed information on ocean circulation and the currents'

motion can be obtained. By comparing the ocean surface as measured by the altimeter

to the geoid, ocean currents can be observed.

Until the flu'st altimeter was flown on Skylab on January 31, 1974, the Earth's

gravity models were based mainly on ground based satellite tracking data and on

surface gravimeter measurements. Current gravity models have been determined using

not only satellite tracking and surface gravimeter data, but also altimeter data from one

or more satellites such as GEOS-3 and SEASAT. The use of altimeter data from these

two particular satellites has further improved the ocean surface accuracy level to the two

meter range and better in some areas.

In addition to biases caused by drifts in the satellite's clock, random errors in
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thealtimetermeasurementsoccurfrom thermalnoiseandfrom instrumentlimitations.

Theatmosphereandionosphere,aswell astheoceansurfacewill alsointroduceerrors

dependingon thesignalfrequencyandtheroughnessof thesea. Theoretically,all the

errorsin singlefrequencyradarmeasurementscanbe reducedto approximatelythe 8

cm level [Greene,1971]. SEASATdemonstratedaprecisionlevel of 10cm or better

[Lerch,Marsh, Klosko and Williamson, 1982]. Current technology proposals include

the use a dual frequency radar altimeter signal to reduce measurement errors by

providing a direct measure of the ionospheric effects. TOPEX will use this technique,

and is expected to have the altimeter measurement errors to within 2 cm [Stewart, et al.,

1986]. To achieve this level of accuracy for altimeters, the knowledge of the

geopotential field must be improved significantly [Lerch, et al., 1982].

Altimetry is mainly used for the recovery of the shorter wavelength features of

the gravity field, but it is not a very useful technique for the recovery of the longer

wavelengths [ESA, 1987]. Large discrepancies in the geopotential field remain in both

the land areas and in the ocean areas above +72 ° latitude where GEOS-3 and SEASAT

were unable to cover [ESA, 1987]. Altimetry data are useful for improving the gravity

field knowledge of the oceanic areas, but not the continental regions of the globe. Even

with the combination of satellite tracking data, surface gravimetry data, and altimetry

data the resolution of the gravity field cannot be obtained to the accuracy levels that are

desired, and therefore other methods must be applied [ESA, 1987].

1.5 Gravity Gradiometers

Space-borne gradiometers have been under development since 1970, although
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to date, no gradiometers are known to have flown in a satellite mission. However,

gradiometers have been used to measure the gravity field from instruments carried on

airplanes, as well as on the ground [Argentiero and Lowrey, 1978]. The most recent

development in moving based gravity gradiometers is the Gravity Gradiometer Survey

System (GGSS). The GGSS, consisting of three pairs of mutually orthogonal

accelerometers, is installed in a mobile van that can measure the gravity gradient by

either traveling on the ground or by being carried in a C-130 airplane [Jekeli, 1987].

In the presence of a gravitational field, the gravity gradiometer measures the

differences in the forces sensed by two or more accelerometers. The amplitude of the

output signal from the sensors supplies the second derivatives of the gravitational

potential from which the gravity values can be estimated [Forward, 1972]. The

uncertainties in the measurements have been improved in the last few years from less

than one Eotvos Unit (E.U.) in 1980 [Torge ], to between 10 -3 E.U. and 10 -5 E.U.

[ESA, 1987], where one E.U. is equivalent to 10 .6 m s-2/km [Torge, 1980].

The long wavelength features of the gravity field are relatively well known,

therefore, the recovery of the short wavelength terms in the gravity field is of principal

importance for obtaining a comprehensive gravity model. These terms have little

contribution to the overall gravity field, but can contribute significantly to the gravity

field in the neighborhood of an anomaly. The gradiometer's advantage is that it senses

the gradient of the gravity field of the immediate area, enabling it to resolve the short

wavelength terms [Forward, 1972].

Feasibility studies have been performed on the usefulness of gradiometers in the
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recoveryof thegravity field. For asatelliteat analtitudeof 200km, a 1° x 1° gravity

anomaly of 1 to 2 mgal will require the gradiometer to have a measurement accuracy of

under 10 -2 E.U. [Reigber, Keller, Kunkel, and Lutz, 1986]. The results from studies

performed by European agencies indicate that gravity fields determined with

gradiometers are comparable in accuracy to those obtainable from alternate satellite

measurement types. The proposed Gravity Gradiometer Mission (GGM) anticipates an

accuracy in the measurement signal of 10 -4 E.U. This accuracy level would produce a

50 km resolution of the gravity field [Paik, 1985]. Unlike current altimetry data,

however, the gravity gradiometers can provide global data for the gravity field, without

restriction to specific geographic areas. Methods for the recovery of the gravity field

from satellite gradiometry are at a very early stage. A preliminary study of the

determination of the gravity field using full tensor gradiometry was described by

Colombo [1987]. The primary disadvantage of the satellite gradiometry technique is

that it is not a proven or well-tested technique for satellite applications.

1.6 High-Low Satellite Pairs

The "high-low" satellite configuration is a proposed technique for meeting the

dedicated gravity mission requirements. It consists of one high altitude satellite and

another satellite in a much lower altitude, polar orbit. The low satellite must be

sufficiently low to sense short wavelength gravity anomalies, while the high satellite

must be sufficiently high to be insensitive to these short wavelength features of the

gravity field, as well as atmospheric effects [Siry, 1973]. This concept was originally

proposed to recover long wavelength effects, but it can be used for the detection of the

short wavelength terms of the gravity field as well [Agentiero andLowrey, 1978].
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In 1972,thehigh-low configurationof theATS-F/Nimbus-Ewassuggestedas

anexperimentto recovertheshortwavelengthfeaturesof thegeopotentialfield [Von

Bun, 1972]. ATS-F, a geostationary satellite, and Nimbus-E, a weather satellite at an

altitude of 1000 kin, demonstrated that the range-rate data from satellite-to-satellite

tracking could successfully be used to detect gravity anomalies of short wavelengths

even though the Nimbus satellite had a fairly high altitude for this type of recovery

technique. With the encouraging results from ATS/Nimbus, a high-low mission

dedicated to recovering the gravity field was proposed.

The Geopause/Gravsat mission was fh-st proposed in 1973. The high altitude,

Geopause satellite would have been a 14 and 24 hour, polar orbit. The low altitude,

Gravsat satellite, was proposed to have an approximate height of 300 km, in a polar

orbit as well. Polar orbits were selected in order to have complete global coverage of

the gravity field, and the 300 km altitude was regarded as low enough to sense the short

wavelength gravity perturbations. To maintain the satellite at the desired altitude, the

low satellite would have to be equipped with a drag compensation device to adjust for

atmospheric effects that would cause the orbit to deteriorate. This compensation device

would allow the satellite to follow a purely gravitational path.

With both the high and low altitude satellites in the same orbit plane, the

Geopause satellite could observe the along-track and radial components of the Gravsat

orbit but, it would be less sensitive to the cross-track component. By adjusting the two

orbit planes to have an angle of 30 ° to 45 ° between them, it was shown by Siry [1973]

that the cross track component could be observed by the higher orbit satellite.
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In 1974, Koch and Argentiero [1974] performed a simulation of the

Geopause/Gravsat mission. Their main interest was to improve the lower degree and

order coefficients of the gravity field. They expected one or two orders of magnitude

of improvement of the terms up to degree 8 and order 6. However, Estes and

Lancaster [1976a] demonstrated that the same mission could be used to recover the fine

structures of the gravity field, and by lowering the altitude of the Gravsat satellite, the

short wavelength terms could be more easily detected.

1.7 Low-Low Satellite Pairs

As early as 1969, it has been proposed that a satellite pair, in identical polar

orbits, could effectively recover the Earth's gravity field [Wolff, 1969]. The basic idea

of this "low-low" configuration is that the satellites would maintain a low, polar orbit

that should completely cover the entire Earth in approximately one month's time. These

satellites would be separated by a specified distance which would depend upon the

selected altitude and the level of accuracy desired. The measurement signal would be

the relative motion, either range or range-rate, between the two satellites.

In addition to the high-low mission simulation previously discussed, Estes and

Lancaster [1976b] also performed a simulation for the low-low mission. The altitude

of the satellite pair was specified to be 250 km. This study showed that the low-low

configuration would sense the local gravity field (much like the gravity gradiometers)

and would be less sensitive to gravity effects that are further away than the conventional

satellite measurement signal, since anomalies would affect both satellites in a similar
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manner. Their overall results, however, were not very promising. There was

difficulty in themeasurementof both theradial andthecrosstrackcomponentsof the

relativevelocity betweenthetwo satellites.Theyalsofoundasignificantproblemwith

differentiatingbetweenthefrequenciesgeneratedby thegravityfield, i.e. aliasing,and

theyconcludedthatthehigh-lowconfigurationwasmorefavorable.

Themostsignificantadvantageof thelow-low configurationover thehigh-low

configuration is the length of missiontime requiredto completelysurveythe Earth.

The low-low mission would needonly four weeksto completelysurveythe Earth,

whereas,thehigh-low missionwouldrequirefour monthsto obtainthesamecoverage

of theEarth[ESA,1987]. The shortertime neededfor the low-low missionallowsfor

the samemission to be performed repeatedly. Variations of the mission can be

performedby changingtheseparationdistancein orderto causethemeasurementsignal

to be moresensitiveto certainwavelengths. This ability to repeatthe missionwill

insurethedataintegrity andwill help to eliminatethealiasingproblemdescribedby

Estes and Lancaster [1976b]. Another important advantage of the low-low mission is

that the recovery of the geopotential coefficients are expected to be one order of

magnitude better than could be achieved with the high-low mission [Willis and Smith,

19801.

The satellite-to-satellite methods have fewer measurement error sources than the

ground based tracking methods. Both ground station locations and the atmosphere are

major sources of errors in satellite measurement techniques, however, the low-low

satellites always remain in sight of each other and would have continuous global

coverage, a major advantage over ground based measurements. The low-low
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configurationwasselectedfor studyin theGeopotentialResearchMission becauseof

its greatersensitivity to the gravity anomalies[ESA,1987],and becauseof theshort

missiontime it requires. A discussionof aproposedconceptfor this missionwill be

describedin moredetail in thefollowingchapter.

1.8 Introduction to Topics

The objective of this dissertation is to investigate the aspects of the Geopotential

Research Mission using the low-low configuration that pertain to mission planning and

orbital operations. Requirements of the gravity field recovery phase of the mission are

discussed. A simulation of the GRM satellite pairs was used to study the feasibility of

the specified requirements.

In Chapter 2, a discussion of the GRM satellite pair is presented along with the

mission goals and expectations for the geopotential field recovery. In Chapter 3, the

characteristics of frozen orbits are studied and axe compared to non-frozen orbits.

Methods for determining the initial conditions for the mission planning and the

operational phase are described in Chapter 4. A simulation of the GRM satellite pair is

studied and an identification of significant resonant terms are made in Chapter 5. In

Chapter 6, the effects of temporal perturbations on the relative range-rate between the

satellites are investigated.
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CONCEPTOFTHE GEOPOTENTIALRESEARCHMISSION

2.1 Introduction

The Geopotential Research Mission (GRM) is part of a program designed to

recover the higher order geopotential coefficients by using the relative range-rate

changes between two satellites in nearly identical orbits. The two satellites should

maintain a nearly constant separation distance, typically several hundred kilometers.

The orbits will be low altitude, polar orbits and the groundtracks should repeat after a

specified number of days (Figure 2.1). The altitudes of the satellites depend upon the

number of days required for the groundtrack to repeat, and on the number of exact

revolutions of the satellites required in that same amount of time. To date, the altitude,

the frequency of the groundtrack repeat, and the distance separating the satellites have

not been finalized for the GRM, but a nominal mission is provided in this discussion.

The mission is designed to have an operational lifetime of a minimum of six months

[Keating, Taylor, Kahn and Lerch, 1986].

Spatial variations in the Earth's geopotential field can be measured by the

changes in the relative range-rate between the two satellites. As the leading satellite

approaches a gravity anomaly, it will respond with a change in its absolute velocity.

This change is sensed through the doppler shift in the radar signal by the second,

14
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trailing satellite, which hasnot yet beenaffectedby the anomaly [NASA, 1984].

Relativevelocity is usedasthemeasurementtypebecauseit is moresensitiveto the

variationsin thegravityfield thantherelativerangemeasurement[ESA,1987].

Along with gathering information on the gravity field, theselow altitude

satellitesarealso expectedto gatherinformationon theEarth'smagneticfield. The

magnetic field would be measuredby magnetometers;both scalar and vector

magnetometersareto becarriedby theleadingspacecraft.Themagnetometerswill be

placedonaboomthatwill shieldthemfrom themagneticeffectscreatedby thesatellite

itself [Keating,et al., 1986].

The primary advantage of satellite-to-satellite tracking is the availability of a

nearly continuous measurement signal. Due to geophysical and political constraints,

the data from previous techniques used to recover the Earth's geopotential field are

unevenly distributed. The limits of useful information from current techniques have

essentially been achieved and new techniques must be devised to obtain a more accurate

gravity model. The low-low configuration the chosen configuration for reasons

discussed in Chapter 1 [Smith, Langel and Keating, 1982].

The ability to recover the geopotential field depends upon altitude, separation

distance, data type, data rate, data noise, model errors and a priori values of the

geopotential coefficients [Estes and Lancaster, 1976a]. The limitations and

requirements on these parameters are discussed in this chapter, except for the a priori

values of the geopotential, which will be discussed in Chapter 5. The research

described in this dissertation will concentrate on the gravitational aspects of this
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mission,but notupontheactualrecoveryof theglobalgeopotentialfield.

2.2 Prior Work on the Geopotential Research Mission

A study presented by Colombo [1984] provided a set of initial conditions which

produced an orbit that met many of the requirements designated for the mission. The

trajectory from these initial conditions were compared to the trajectory from a new set

of initial conditions derived for this study. This dissertation concentrates, in part, on

determination of the best set of initial conditions that meet the requirements specified for

this mission. The initial conditions are then used in a simulation for 32 days of mission

lifetime.

The GRM study is coordinated by the NASA Goddard Space Flight Center.

Most of the previous work on GRM has concentrated on the recovery of the

geopotential field. Wagner and Goad [1982], Kaula [1983] and Colombo [1984] have

each devised a method to recover a high resolution global gravity field of the Earth.

Results from the simulation of the GRM satellites presented in this study may be used

to test these recovery techniques.

2.3 Description of the Mission

Originally planned to be launched from the shuttle, the orbit insertion plan for

the GRM satellites may change in light of the recent problems with the shuttle.

Regardless of the transportation mode into space, both satellites will be inserted into

polar orbits at an altitude of 275 km with an initial separation distance of 50 km. The
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satelliteswill thenundergoa seriesof partialdescentsandcheckoutsfor four daysuntil

theyreachthespecifiedaltitudeof 160km andaseparationdistanceof 300km. At that

time, _herewill besevendaysof final testingbeforethesatellitesbegintheiroperations

[Keating, et al., 1986]. Therefore, there will be only one week to place the two

space,aft into their proper orbits before the initiation of the operational phase of the

mission.

Since the recovery of the higher harmonics in the Earth geopotential field is a

primary goal of this mission, the altitudes of the satellites should be as low as possible

to enhance to sensitivity of the gravity signal. Atmospheric drag problems are avoided

by using a Disturbance Compensation System (DISCOS) to cancel the effects of drag.

First used on the TRIAD satellite in 1972, DISCOS contains sensors that activate

thrusters in order to maintain a proof mass inside a cavity within a specified zone. This

system not only shields the satellites from atmospheric perturbations, but also negates

the effects from other nongravitational perturbations, such as solar radiation pressure,

that may affect satellite motion. Enough fuel must be carried to compensate for the drag

forces so that the satellites can maintain their orbits for at least six operational months

[NASA, 1984]. The fuel requirements are an important factor in determining the

limiting altitude of the satellites.

The average altitude of the satellites is proposed to be approximately 160

kilometers above the reference ellipsoid. If the altitude is lower than 160 kin, then the

satellites will have to correct more frequently for atmospheric effects, thus, requiring

more fuel. A difference of only ten kilometers results in as much as a 35% increase in

fuel consumption [Ray, Jenkins, DeBra and Junkins, 1985]. The altitude cannot
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remain precisely constant at 160 km becauseof short period fluctuations in the

semimajoraxiswhicharecausedbytheperturbingforces. However,theaveragevalue

of the altitudeshouldremainnear160kin. Thevariationin altituderesultingfrom the

gravitationalforceswill affecttheDISCOSsystem,whichwill needto compensatefor

theshortperiodchangesin thedragforcesassociatedwith altitudevariations.

The sernimajoraxis is selectedto producea repeating groundtrack after a

specifiednumber of days, for example30, 60, 90 or 180 days,dependingon the

desiredequatorialspacing[Keating, et al., 1986]. The frequency of the groundtrack

repeat chosen will maintain the satellites at a mean height above the reference ellipsiod

of approximately 160 kilometers. In addition, the longitude of the ascending node is

equal to 90 ° which places the orbit in the inertial Y-Z plane, thereby minimizing the

luni-solar effects [Estes and Lancaster, 1976b]. The mean argument of perigee is equal

to 90 ° , and since the orbit is polar, the inclination is equal to 90 ° . The eccentricity is

selected so that it will have no long periodic effects and so there will be no long

periodic or secular effects in argument of perigee. Such an orbit is referred to as a

"frozen" orbit [Cook, 1966].

With a frozen orbit, the mean orbital ellipse does not change its shape or

orientation, except for precession of the longitude of the ascending node, which will be

close to zero since the orbits are polar. The orbits require constant mean orbital

elements in order to allow the altitude above a particular point over the Earth to remain

essentially constant with each satellite pass. This is a necessary condition for certain

recovery techniques that use the Fourier harmonics in the determination of the

disturbing function. Frequencies of the perturbations due to the geopotential will be
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constantif themeanargumentof perigeeis alsoaconstant[Wagnerand Goad, 1982].

In addition, the small value for the eccentricity needed for the frozen orbit limits the

variation in the semimajor axis. This fact restricts rapid changes in the altitude and will

reduce the tracking errors for the individual satellites.

Relative range-rate has been selected as the measurement signal because it is

more sensitive than relative range to the changes in the local gravity field. The lead

satellite reacts to a gravity anomaly before the second satellite does. This creates a

change in the relative range-rate which is measured by the tracking systems onboard

both satellites. When the trailing satellite reaches the gravity anomaly, there is another

change in relative range-rate.

Two doppler signals are continuously sent and received between the two

satellites at the 42 and 91 GHz frequencies. These signals provide a data type known

as one way integrated doppler. The two frequencies are required to correct for

ionospheric refraction [NASA, 1984]. The signal broadcasted by the individual

satellite is independent of the signal it receives. The combination of the signals between

the satellites produces the final measurement, the relative range-rate. The shift in the

doppler frequency determines the change in the relative range-rate, which in turn, is a

measurement of the strength of the gravity anomaly [Keating, et al., 1986].

2.4 Mission Requirements and Goals

The goal for the GRM is to obtain and improve mathematical models for the fine

structure of the geopotential and the magnetic field. To be of geophysical interest, the
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accuracylevel for the gravity field improvementis required to be 2.5 mgal. This

improvement shouldenable the geoid to be measuredto within 10 cm while the

magnetometersshouldmeasurethemagneticfield to 1nT (nanotesla).Boththegravity

field andthemagneticfield shouldbedeterminedto aresolutionof 100km. Thegeoid

is currentlyknownfrom 20 to 50cmwith aresolutionof 100to 200km, dependingon

thegeographicallocationandon thegravitymodel[Smith,Langel and Keating, 1982].

The strength of the gravity signal decreases as the altitude increases, so an

altitude increase would either limit the recovery of the higher degree and order gravity

harmonics, or would require more precision in the relative range-rate measurement. At

a 200 km altitude, the amplitude of the gravity signal decreases by a factor of 1.5 from

one at a 160 km altitude; at a 250 km altitude, it decreases by a factor of three. The

altitude must be low enough to enable resolution of the 2.5 mgal signal from a gravity

anomaly that is l°x 1° with the relative range-rate sensor precision of-+1 Ixm/s. The

Goddard Earth Model (GEM10C) has an expected accuracy of 20 mgal over a 1° x 1°

area [Lerch, et al., 1981]. The 160 km altitude produces stronger gravity signals than

the higher altitudes and detects higher gravity harmonics at a given signal error. If the

altitudes of the satellites were higher, then the higher degree harmonics would be too

weak to be detected within the accuracy limits selected [Kahn and Felsentreger, 1982].

The gain in gravity signal strength is linear with the decrease in altitude, but the effect

of drag increases exponentially with the same lowering of height, thus increasing the

fuel requirements [Lowrey, 1975]. The higher the altitude, the less the capability to

differentiate between the gravity anomalies, i.e., a loss of resolution occurs. As the

altitude is reduced, the correlation between coefficients is decreased and there wiU be a

gain in statistical independence between the harmonics [Estes and Lancaster, 1976b].
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At thispoint,it shouldbeclearthattheseparationdistancebetweenthesatellites

is relevantto thedetectionof thegravityanomalies.Features on the Earth's surface that

cause a change in the relative range-rate must be smaller than the separation distance

between the satellites in order for the individual satellites to react to the anomaly at

separate time intervals. The nominal separation distance of 300 km was selected in

conjunction with the altitude. To obtain a variation in the measurement data generated

by the gravity field, this value could be changed during the operational lifetime at the

end of a groundtrack repeat interval.

Determination of the satellites' orbits will be provided by one of three methods,

all of which will have almost complete coverage of the orbits. The orbit tracking will

use the Tracking Data Relay Satellite System (TDRSS), the Global Positioning System

(GPS), and/or the ground based doppler tracking network, TRANET. The system that

is finally selected must be able to support the required orbit accuracy. The 3a accuracy

for the gravitational part of the mission has been specified as 100 m in the radial

direction and 300 m in the along- and cross-track directions. The three tracking

systems under consideration have precisions that readily support these orbit

requirements. For the magnetic mission, the orbits must be known to within 60 m for

radial, and 100 m for the along- and cross-track directions [Keating, et al., 1986].

The criteria for the gravitational aspect of the mission are discussed in more detail in

Chapter 4.
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2.5 Specifications for Mission Simulation

Specific mission characteristics have not been chosen therefore, nominal

mission characteristics have been selected for this study that reasonably represent the

actual mission. The gravity parameter, _t, used in the simulation for this study equals

3.9860064 x 105 km3/sec 2 and the mean equatorial radius was taken to be to 6378.145

km. Although the semimajor axis will vary slightly depending on the geopotential field

used, it will maintain a mean height above the reference ellipsoid of approximately 160

kilometers.

The choice of a 160 krn altitude produces exactly 525 revolutions of the

satellites in 32 sidereal days. Since 525 and 32 are not commensurate, the orbits are

guaranteed to have their first repeat in exactly 32 sidereal days [Thobe and Bose,

1985]. A sufficiently long time interval for the repeat of the groundtrack must be used

in order to resolve the order of the spherical harmonic expansion of the geopotential

field. The number of revolutions in a groundtrack repeat interval is twice the highest

harmonic order that can be determined, and thus the recovery of the geopotential

coefficients up to degree and order 262 is theoretically possible [Colombo, 1984].

The model used in this study, except for Chapter 6, included the Earth's gravity

field as the only force acting on the satellites. No luni-solar, external gravitational

forces or nongravitational forces were considered. The coordinate system was body-

fixed with constant Earth rotation, i.e. precession, nutation, and polar motion were not

considered in the model.
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CHAPTER3

FROZENORBITS

3.1 Background on Frozen Orbits

For satellite science experiments which require the same point on the Earth to be

sampled numerous times, a repeating groundtrack is necessary. In addition, if it is

desired that along a particular latitude the altitude variations have a constant mean value,

then a "frozen orbit" is required for this application [McClain, 1987]. Both of these

characteristics are employed in the recovery of the gravity field harmonics for the

Geopotential Research Mission. A frozen orbit's shape is held constant, thereby

minimizing the variations in the altitude; in addition, a frozen orbit helps to maintain the

nature of the groundtrack repeat [Nickerson, Herder, Glass, and Cooley, 1978].

Several satellite missions have used the frozen orbit concept, including the

Atmospheric Experiment satellites (AE-3 and AE-5), SEASAT, LANDSAT, the Heat

Capacity Mapping Mission (HCMM) [Nickerson, et al., 1978] and GEOSAT. Some

of the results from studies of these missions are discussed in this and in later chapters.

.2.

For the Geopotential Research Mission, as well as some other missions, an

exact groundtrack repeat is required. Rotation of the line of apsides due to even zonal

24
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harmonicsmakesanexactrepeatmorecomplicatedto achieve.At critical inclination,

perigeedoesnotprecess;however,becauseof missionconsiderationsandconstraints,

notall missionsareallowedto havethisparticularinclinationof 63.4°. To facilitatethe

accomplishmentof anexactrepeat,it wouldbeconvenientif theperigeemotioncould

bepreventedatnoncriticalinclinations.Forlow Earthsatellites,theline of apsideswill

undergoasecularmotion of approximatelyfour degreesperday,consideringonly the

J2effect [Roy, 1978]. Therefore,to obtain afrozenorbit, othergravity perturbations

mustinteractwith the seculareffectscausedby theevenzonalharmonicsto produce

small or zeromotion in the argumentof perigeefor noncriticalinclinations. Using a

frozenorbit, whereperigeewill notprecess,enablesanexactgroundtrackrepeatto be

obtainedmoreeasily.

If Fouriertransformsareusedasthetechniqueto recoverthegravity field, then

constantmeanaltitudeover the subsatellitepointsis needed[Colombo,1985]. Since

for theGRM satelliteorbitsonly gravitationalperturbationsareconsidered,then the

semimajoraxis, theeccentricityand theinclination will haveconstantmeanvalues.

However,the longperiodmotionin eccentricityandthesecularratein theargumentof

perigee need to be removedin order to properly employ the Fourier transform

technique.Thiscanbeachievedwith afrozenorbit. A frozen orbit can also maintain a

lower mean eccentricity than a non-frozen orbit [Nickerson, et al., 1978]. This chapter

investigates the need for frozen orbits, demonstrates the manner in which frozen orbits

are derived, and describes the characteristics of frozen orbits.
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3.2 Definition of Frozen Orbit

The definition of a frozen orbit, according to Kozai [1959], is an orbit that has

no secular precession of the argument of perigee at any inclination; the longitude of the

ascending node is not required to be constant. In addition to eliminating the precession,

the argument of perigee and the eccentricity of the frozen orbit will not display any long

period effects due to the odd degree zonal harmonics.

Cook [1966] determined that if only the long period and secular effects of a

disturbing function are considered, then a value for eccentricity can be found for a

given semimajor axis and inclination that will eliminate the unbounded motion of the

line of apsides for nearly circular orbits. The orbit will remain frozen as long as

nongravitational perturbations do not interfere with the orbital motion. Cook

demonstrated this result with a disturbing function that included only one even degree

harmonic (J2), and all the odd degree zonal harmonics to J9-

Since the argument of perigee is not well defined for near-circular orbits, the

rate of change of the argument of perigee will not have a smooth secular change, but

instead, it will exhibit nonlinear variations. Such nonlinear effects allow the long

period trends due to the odd zonal harmonics to effectively cancel the secular trends due

to the even zonal harmonics. In order to obtain a frozen orbit, the geopotential field

used to calculate the orbital elements must have the minimum of one odd and one even

degree zonal coefficients, e.g., J2 and J3.

The addition of J4 to Cook's analysis changes the value for the frozen orbit
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eccentricityby approximately3%. As moreevenzonalharmonicsof higherdegreeare

addedfor thecalculationof thefrozenorbit eccentricity,thechangesin theeccentricity

becomelesssignificant [Nickerson,et al., 1978] because of the general reduction in

coefficient magnitude with the increase in degree. The value of the eccentricity,

calculated for a geopotential field of even and odd zonal harmonics to J9, will require

little adjustment if a much larger geopotential field is used, including the tesseral

harmonics. Although Cook did not include any of the even zonal harmonics above J2

in his work, the calculations for the frozen orbital elements required for this study

included J4.

Lagrange's planetary equations for the Keplerian orbital elements contain a

singularity when the eccentricity equals zero. To remove the singularity, and to have a

set of orbital elements that will be well behaved for small eccentricities, a modified set

of orbital elements was chosen. The elements _, 11, and o replaced e, co, and tp in the

standard, Keplerian set of orbital elements.

= e cos co

11 = e sin co

O=_+ntp

where n is the two-body mean motion, tp is time of perigee passage, e is the

eccentricity, and co is the argument of perigee. Semimajor axis, inclination and

longitude of the ascending node complete the set of elements. Lagrange's planetary

equations for the modified orbital elements are provided in the Appendix A [Taft,

1978]. The two orbital elements, 1"1and _, are the components of the eccentricity
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vector, which points in the direction of periapsisfrom the centerof the coordinate

system[Bate,Mueller and White, 1971].

By neglecting the short period effects, an analytical solution for the time

derivatives of rl and _ can be used instead of actually integrating the equations of

motion provided in Appendix A. The solutions are:

= A cos ( kt + o: )

r I = A sin ( kt + (x) + C/k

(3.1)

The equations for C and k are also provided in the Appendix A, as given by Cook

[1966]. The secular effects due to the even zonal harmonics are contained in k and the

long period effects due to the odd zonal harmonics are contained in C. The amplitude,

A, for the oscillation in _ and rl is independent of the amplitude of the long period

effects produced by the disturbing function. The amplitude and phase angle, (x, depend

only upon the initial conditions.

3.3 Characteristics of Frozen Orbits

When the orbit motion is plotted in the ( _, 11 ) plane, two possibilities can

occur. First, if A > I C/k I, then the argument of perigee will be unbounded, and the

orbit will not be frozen (Figure 3.1 a). The second possibility is that if A < I C/kl, in

which the argument of perigee will be bounded between 0 ° and 180 °, and will oscillate

around 90 ° as illustrated in Figure 3. lb [Cook, 1966]. When the eccentricity is exactly
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equalto C/k, thentheamplitudewill bezeroandthe argumentof perigeewill beheld

fixedat 90° insteadof oscillating,andtheorbit is termed"frozen"[Cook,1966].

The time requiredto completethe circlesin Figures3.1 is equivalentto the

longestperiodin thedisturbingfunctiondueto theodddegreezonalharmonics;in the

caseof GRM, this intervalis about79days. It shouldbenotedthat11oscillatesabout

C/k in Figure3.1b,but maintainsa valuegreaterthanzero;whenthis is thecase,the

orbit is termeda "frozen"orbit. Theeccentricitywill beconstantwhenit is equalto

C/k,andit will notexhibit longperiodperturbationsdue to the odd zonal harmonics as

a function of time. If the eccentricity is not exactly equal to C/k, then a long period

oscillation will occur, but the amplitude of that oscillation depends only upon the initial

conditions of Equations (3.1) [Cook, 1966].

The mission simulation selected for this study of GRM has 525 exact

revolutions in 32 sidereal days, which requires that the semimajor axis equals 6526.988

km, and the eccentricity equals 0.00153084 for the disturbing function used by Cook.

For the inclination equal to 90 ° with conditions given above, the phase plane diagram

and the eccentricity as a function of the argument of perigee are displayed in Figures

3.2a and 3.2b. The center represents the frozen orbit (eo = 0.00153084) and was

based on the even degree zonal harmonics, J2 and J4, and on all the odd degree zonal

harmonics to J9- The amplitude, A, is equal to C/k - eo and the phase angle, _ is set to

90 °. In contrast, the non-frozen orbit figures for the ease where A > I C/k I are

provided in Figures 3.3a and 3.3b.
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FromKaula [1966], the deviations from a secularly precessing orbit due to the

disturbing function for eccentricity and argument of perigee are:

Aelmpq = l.tae 1 FlmpGlpq(1-e2)l/2[(1-e2)l/2(1-2p+q)-(1-2p)]Slmpq

na l+:_e [(1-2p)cb + (1-2p+q)K/+ m(_-O)]

ACO_pq = _tae 1 [(l-e2) 1/2 FL,np(0G1pq/0e ) - cot/(1-e2)q/2(0Ftmp/0i )Glpq]g'_pq
1+3

na e [(1-2p)eb + (1-2p+q)_ + m(_2-O)]

where ae is the mean equatorial radius of the Earth, O is the rotation rate of the Earth,

Glpq is the eccentricity function, Flmp is the inclination function, and _lmpq is the

integral of S1mpq with respect to its argument. Since only zonal harmonics are being

considered:

Slmpq = Clm cos[(1-2p)c0 + (1-2p+q)M ] + Ctm sin[(1-2p)to + (1-2p+q)M ]

When the denominators of Equations (3.2) become exactly zero, as in the case

of zero eccentricity or in the case of resonance (Slmpq -- 0), these equations become

invalid [Kaula, 1966]. The long period effects generated by odd zonal harmonics are

associated with the coefficient of the time derivative of the argument of periapsis, tb.

These terms will be zero for the frozen orbit, and since only zonal harmonics are

considered, m is zero. The remaining term is the time derivative of the mean anomaly

term, _, which is associated with the short period terms. Cook's theory only

considers the secular and the long period effects and neglects the effect of the short



31

periodterms,therefore,theentiredenominatorsof bothEquations(3.2)arezero,and

Kaula'sequationsarenotvalid to usefor Cook'sfrozenorbits.

3.4 Addition of Short Period Terms

With the inclusion of the short period perturbations, the closed form of the

solutions for _ and rl can no longer be used. Instead of the zonal harmonics to J9, the

full 9 x 9 geopotential field was used to create a frozen orbit that, unlike the preceding

analysis, includes short period effects. The zonal harmonics and the 9 x 9 geopotential

field were taken from the OSU322 field described in Section 1.2. The orbit was

generated using the software UTOPIA, the University of Texas Orbit Processor; which

will be described briefly here, but in more detail in Chapters 5 and 6. The numerical

integration of the equations of motion with UTOPIA was carried out for 32 sidereal

days.

The frozen orbit conditions were met by choosing the mean orbital elements to

be the frozen orbital element values, arrived at through Cook's equations, as inputs to

SPENEW. The software SPENEW evaluates the analytical expressions for a secularly

precessing ellipse and generates a position ephemeris file for 32 days. Points from the

secularly precessing ellipse for the frozen orbit were used as the observations for

UTOPIA. A least squares fit to the position ephemeris was made by UTOPIA to obtain

a set of initial conditions that should remain frozen in a mean sense, and to study the

short period effects on the frozen orbit due to the gravity harmonics.
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Thespecificcharacteristicsof thefile createdby SPENEWwereasfollows:

a = 6526988 m

e = 0.00153084

i = 90 °

= 90 °

f_ = 90 °

M= 0 °

= 0 rad/sec

= 0 rad/sec

= 0.119636321 x 10 -2 rad/sec

The results from the least squares fit by UTOPIA to the ephemeris generated by

SPENEW are shown in Figures 3.4 and 3.5 which now include the short period

effects. From the phase diagram for the non-frozen orbit (Figure 3. la), the value for ri

becomes less than zero, therefore, the argument of perigee will not be bounded and the

orbit cannot be frozen. This appears to occur when the short period effects are included

(Figure 3.4a and b). One complete trace of the curves in these figures is performed in

one orbital period. The patterns are due to the inclusion of the short period effects only

and are not associated with the long period tracings seen in Figures 3.2a and 3.2b. The

amplitude of the short period effects are sufficiently large to apparently destroy the

frozen orbit integrity. However, the changes in the orbital elements with respect to time

(Figures 3.5a and 3.5b) indicate that their mean values remain frozen. Consequently,

even though the short period terms increase the osculating values of the eccentricity and

the argument of perigee beyond the bounds of the frozen orbit, the mean orbit elements

retain the frozen characteristics.
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Fromtheindividual orbit elementplots (Figure3.5aandb), themeanvaluesof

argumentof perigeeandeccentricityremainconstantat approximatelytheirfrozenorbit

values. Thereis no longperiodtrendin eitherof theelements,andthereis no secular

trend in argumentof perigee. Though theosculatingcovariesfrom 0° to 360 °, the

mean value remains constant at 90 °, allowing a frozen orbit to still exist even in the

presence of short period effects [Nickerson, et al., 1978]. This effect will be illustrated

more clearly in later sections when the trends in the orbit element plots for a frozen orbit

are compared to the orbit element characteristics of the non-frozen orbit.

3.5 Non-frozen Orbits

As a comparison to the frozen orbit, a non-frozen orbit was generated using the

same 9 x 9 geopotential field used to generate the frozen orbit, described in the

preceding section. However, for the non-frozen orbit, _b was equal to -4.59

degrees/day, instead of the frozen orbit value of zero. The time rate of change of the

argument of perigee, as well as the time rate of change of the mean anomaly, must be

included when determining the value for the semimajor axis that will provide an exact

groundtrack repeat for the non-frozen orbit case.

If the orbit is frozen, • = 0, then only M must be considered in the calculation.

As discussed earlier, the satellites for GRM in this study must repeat their groundtracks

every 32 sidereal days. With the inclusion of a nonzero _, the periods of the orbits will

not be changed, but the value for the semimajor axis for a non-frozen orbit will differ

from the frozen orbit's value. The equation for _0, provided by Kaula [1966],

calculated as a function of J2 and Jn only is as follows:
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= -3nJ2a_2(5sin2i -4) - 5nJ4a_4(105/64 sin4i- 15/8 sin2i + 3/8)

4(1-eE)Ea 2 (1-eE)4a 4

The time rate of change of mean anomaly plus the time rate of change of

argument of perigee must sum to the value of the mean motion that will contain 525

revolutions in 32 sidereal days. The resulting mean semimajor axis for the non-frozen

orbit is 6523.608 kin. The angular rates are: _ = -0.928769168868 x 10 .6 rad/sec,

is still equal to zero, and 2_/ = 0.119729152669167 x 10 .2 rad/sec. Figures 3.6a and

3.6b are the orbit element plots for the non-frozen orbit for 64 days, two complete

groundtrack cycles. A long period trend is apparent in the eccentricity plot, which has a

value of about 79 days. The argument of perigee has an obviously secular trend, unlike

the frozen orbit to. Inclination and longitude of the ascending node plots are not given

since both of these parameters remain essentiaUy constant for the polar orbit.

The initial latitude and longitude for the leading GRM satellite used in this study

were 88.688 ° and 169.757 °. After integrating for 32 sidereal days, with a 9 x 9

geopotenfial field, the final longitude and latitude for the non-frozen orbit were 88.689 °

and 169.757 ° . After 64 sidereal days, the latitude and longitude for the satellite were

88.562 ° and 169.749 °. After 32 sidereal days, the non-frozen orbit satellite had a

nearly exact groundtrack repeat but, after 64 sidereal days, the deviation in latitude was

0.126 °. For the frozen orbit with a 9 x 9 geopotential field, the deviation in latitude

after 64 days was only 0.005 ° (which will be demonstrated in Section 5.2), indicating

the greater ease in maintaining a repeating groundtrack for a frozen orbit than for a non-

frozen orbit. Further comparisons of the frozen and non-frozen features, in particular
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thedrift problembetweenthetwo satellites,arepresentedin Chapter4.

Thephaseplaneandeccentricityversustheargumentof perigeediagramfor the

non-frozenorbit are illustrated in Figures3.7aand 3.7b. The satellite'sorbit was

integratedfor 80daysin orderto completeonecycleof the longestperioddueto the

odd zonalharmonics.Thefrozenorbit, which includesshortperiodeffects,hasavery

distinct pattern,with clear borders(Figures 3.4aand 3.4b). The non-frozenorbit,

however,producesamorediffusepattern. Also, the magnitude of the parameters are

larger than the frozen orbit's values, indicating larger variations in the orbit element

values.

3.6 Summary

This aspect of the study was performed using a 9 x 9 geopotential field. A

study presented by Schutz, Tapley, Lundberg and Halamek [1986] contains the phase

plane diagrams for a 180 x 180 geopotential field. The results from the 180 x 180 field

are nearly identical to the phase plane diagrams presented here (Figures 3.4a and 3.4b),

thereby suggesting that the dominant short period effects are contained within the 9 x 9

field, and that the dominant secular and long period effects are due to the first nine

zonal harmonics. The short period amplitudes due to :I2 alone are at least three orders

of magnitude larger than the short period amplitudes due to any of the other harmonic

terms [Kaula, 1966].

As was explained in this chapter, the importance of frozen orbits for the

Geopotential Research Mission is twofold; frozen orbits allow repeating groundtracks
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to bemoreeasilymaintainedandtheyprovideanearconstantaltitudeoverindividual

subsatellitepoints. Sinceit is desiredto repeatthe entire mission severaltimes to

securereliable measurementdata, the repeatinggroundtrackis a necessarymission

requirement. For certain geopotential recovery techniquesminimizing altitude

variationsisessential,therefore,afrozenorbitwill berequiredto meetthisconditionas

well.

Resultsin Chapter4 will demonstratethata frozenorbit allows therepeating

groundtrackto bemoreeasily maintainedthan a non-frozenorbit over the mission

lifetime. Resultsin Chapter6 will provideanindicationof thefrozenorbit stability in

thepresenceof othergravitationalperturbations.
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Figure 3. la

Orbital motion in the ( _, 11) phase plane

A > I C/k INon-frozen orbit
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Figure 3. lb

Orbital motion in the ( _, _l ) phase plane

A <lC/k IFrozen orbit
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Variation of eccentricity versus argument of perigee.

No short period effects were included: Frozen orbit
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Mean orbit elements were frozen.
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CHAPTER4

ADJUSTMENTOFINITIAL CONDITIONS

4.1 Introduction

A set of initial conditions must be determined for both satellites that will best

satisfy the mission requirements. Since it is expected that the trailing satellite follows

the lead satellite in nearly the same orbit, only one set of orbital elements for one of the

satellites will be discussed.

As described previously in Section 2.5, the satellites in this simulation will have

a 32 sidereal day repeat with 525 exact revolutions in that time. The orbital period that

will produce these conditions can be determined by dividing the number of seconds in

32 sidereal days by 525. This orbital period produces a resulting mean motion of

1.1963627 -x t0 -3 rad/sec. If the orbit is not polar, the determination of the period is

calculated by:

P= ( 1 +_/tae ) ND / NR

where P is the orbital period, _ is the mean time rate of change of longitude of the

ascending nodes, me is the rotation rate of the Earth, ND is the integer number of days

51
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of thegroundtrackrepeatinterval,andNR is the integernumberof revolutionsin the

repeatcycle. If theorbit is polar,asthecaseof GRM, theprecessionalrateof thenode

will equalzeroandtheorbitalperiodwill simplybeequalto theratioND/NR.

The time rateof changeof themeananomalyis equatedto the valueof the

meanmotiongivenabove.However,theseculartimerateof changeof meananomaly

consistsof not only the two-body term,but it is also a function of the even zonal

harmonics. The equationfor the time rateof changeof themeananomaly,_, asa

functionof thedisturbingtermsdueJ2 and J4 only is:

3_/= n [ 1 + 3J2ae2/{ 4(1-e z)3/2a 2} (3cos2i _ 1) + 3J4(aJa )4 (105/64 sin4i -

15/8 sin2i + 3/8) (1-e 2) -5/2 {1 - (1 + 3/2e 2)/(1 - e 2)} ]

where n is the two-body mean motion. It should be noted that the time rate of change

of mean anomaly is a function of semimajor axis and eccentricity. In order for the

satellites to repeat in 32 sidereal days, the value of the semimajor axis, a, must satisfy

the time rate of change of mean anomaly when equated to the previously determined

value for the mean motion of the orbit (calculated from the ratio 27r NR/ND). The

eccentricity must satisfy the frozen orbit conditions defined earlier.

A frozen orbit is created by selecting the mean orbit elements to be a =

6526988.0 m, e = 0.001534965, i = 90 °, ca = 90 °, _ = 90 °, and M = 0 °. The time

rate of change of argument of perigee is zero, complying with the conditions for a

frozen orbit. A least squares fit to this frozen orbit trajectory was made to calculate the

initial conditions that best fit the frozen orbit trajectory for 32 sidereal days. The
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generationof this mean,frozen trajectorywasdescribedin Section3.4. The initial

conditions will dependupon the size of the geopotentialfield used, the gravity

parameter,It, andthemeanequatorialradius,ae.Thegravity fieldsusedin thischapter

aretaken from the OSU322field [Rapp, 1981] and from OSU86F [Rapp and Cruz,

1986] described in Section 1.2.

Colombo [1985] provided initial conditions for a geopotential field that

consisted of the OSU322 36 x 36 subfield plus the zonal harmonics to degree 300, with

no other temporal gravitational effects (e.g. tides, precession, etc.). These initial

conditions used a gravity parameter of 3.986013 x 105 km3/sec 2 and a mean equatorial

radius of 6378.155 km. Colombo's initial conditions in Cartesian coordinates are

provided in Table 4.1.

Table 4.1

Colombo's Initial Conditions for Leading and Trailing Satellites

Position (m) Velocity(m/s)

Leading Satellite rx 0.0 Vx 0.0

ry -150000. vy -7817.1468749596

6514763.771448 Vz -179.513061923

Trailing Satellite rx 0.0 Vx 0.0

150000. Vy -7817.1468749596

6514766.990466 Vz 179.513061923
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Usingamorecurrentgravityparameter,_, of 3.9860064x 105 km3/sec 2 and a

mean equatorial radius of 6378.145 km, a new set of initial conditions were determined

for a 36 x 36 OSU322 subfield which will be described in Section 4.8.

4.2 Determination of a Principal Set of lnitial Conditions

A 32 sidereal day repeating groundtrack trajectory was obtained by generating a

secularly precessing elliptical orbit defined by the frozen orbit conditions provided in

the previous section. As described in Section 3.4, UTOPIA was used to make a least

squares fit to this frozen orbit. The initial osculating position and velocity for a

geopotential field with only zonal harmonics to J9 are presented in Table 4.2.

Table 4.2

Initial Conditions for Zonal Harmonics to J9

Position (m) Velocity (m/s)

rx 0.0 Vx 0.0

ry -32010.44187981 Vy -7819.018360577

rz 6516497.39025295 Vz -37.86736549955

These initial conditions were numerically integrated forward and backward in time until

y equaled ±150000 meters, producing initial conditions for both the leading satellite and

the trailing satellite. These y-coordinates were selected since they allow the initial

conditions to resemble Colombo's initial conditions, and caused the satellites to begin
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at approximately 300 km apart; the actual separationdistancewill be a mission

specification. Theepochtime usedby Colomboandassumedfor this studywas the

Juliandateof 2445700.5,January1, 1984,00:00.

Theinitial conditionsfor bothsatellites,with a geopotentialconsistingof zonal

harmonicsto J9only, werenumerically integratedfor 32 siderealdaysto determine

their relativerange,relativerange-rate,andrelativeaccelerationbetweenthesatellites.

Therelativerangevaluesweresubtractedfrom a 300km separationdistanceto assess

the ability of the initial conditionsto producelittle or no seculartrend in therelative

motion. If a seculartrend(or drift) doesappear,it canbeeliminatedby adjustingthe

initial conditions. A positive seculartrend indicatesthat the satellitesaredrifting

together,andthey aredrifting apartif thetrend is negative.Both of the satellitesare

requiredto haveanexactrepeatafter32siderealdays,thatis,the longitudeandlatitude

of both satellites must return to their initial values. If only zonal harmonicsare

considered,therewill beno longitudinalerror,sincethetwo orbitswill remainin they-

z plane. However, when the tesseraland sectorialharmonicsare included in the

geopotentialmodel, longitudinal errors in the groundtrack will be introduced.

If the initial conditions created for the case with zonal harmonics only are used

in a numerical integration with a 9 x 9 geopotential field, there will be a resulting drift

generated between the two satellites, and their final subsatellite points after 32 sidereal

days will not be equal to their initial values; therefore, they will not produce a repeating

groundtrack. Instead of fitting the ephemeris created from a 9 x 9 geopotential (or any

other geopotential for that matter) to the frozen orbit defined by a secularly precessing

ellipse, an adjustment can be made in the initial conditions derived for the zonal
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harmonics only geopotential field to each satellite, based on the fact that the two

satellites must repeat after 32 sidereal days.

4.3 Using 32 Sidereal Days to Determine Initial Conditions

A linear approximation for the required change in the radial direction is used to

simultaneously eliminate the drift rate and the latitude errors. Since the orbits are polar

and the initial conditions are close to the north pole and the orbits are nearly circular,

then a, r, and z are approximately equal. As a simplification, the corrections could be

applied in the z direction, however, if the satellites are located somewhere other than

above the pole, the correction should be made in the radial direction. The change in

mean motion, where two-body mean motion only is considered, is equal to twice the

drift rate between the two satellites. Taking the partial derivative of the two-body mean

motion, n, with respect to the mean semimajor axis, a:

1/2 DR = 8n = -3/2 ([a]a5) 1/2 AZo (4.1)

where DR is the drift rate between the satellites and Azo is the total change needed in the

initial conditions to correct for the drift between the satellites. From Equation (4.1), the

net change in the z-coordinate for the satellite position that will eliminate the drift rate

can be determined. Note, for consistent units, the radius, r, must be included in the

right-hand side of the Equation (4.1).

With Azo due to drift, the corresponding latitude change that will be incurred

can be calculated. Since the orbit is near circular, the ratio of the latitude change due to
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drift (A_,which is equalto fin) to thechangein initial z to compensatefor thedrift only

(Azo)remainsessentiallyconstant.After a 32siderealdayintegrationof bothsatellites,

the latitudedifference(_i) betweentheinitial conditionsand thefinal conditionsof

eachof the satellitescan be computed. The error due to the drift is correctedby

assigningAzoto thesatellite thathasthelargestindividual latitudeerror. Theexcess

latitude differenceis thenadjustedby usingtheratio of thechangein latitudeto the

changein z,A_/AZo,dueto drift:

( n0 / ZXZo)Drift = ( 8_i/SZoi ) (4.2)

where 5zoi is the required change in the initial z component to obtain an exact repeat in

latitude for that particular satellite, and i indicates the satellite being considered. The

program FIXDRF, given in Appendix B, was used to calculate the required corrections

in each satellites' initial conditions.

Note that the 5zoi correction will be the same for both satellites; this prevents

inadvertently generating drift between the satellites at the possible sacrifice of the orbit

of one satellite not repeating as well as the other. However, the total amount of the

correction in z added to each satellites' positions will be different, since the satellite

with the largest change in latitude will also include the adjustment for the drift rate. The

determination of whether total correction for the z component is added (or subtracted)

from the initial conditions, is dependent on whether the satellite has moved ahead (or

has trailed behind) at the final time from its latitude at the initial time. If the satellite is

behind, then the correction must be subtracted from the initial conditions to increase the

speed of the satellite (Figure 4.1a). If it is ahead, then the correction must be added to
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raisethesatellite'saltitudeandslowit down(Figure4.lb).

Smallchangesin z affectlatitude,buthavelittle effecton longitude.To correct

the error in longitude, which will occur when sectorialand tesseralharmonicsare

includedin thegeopotential,thex-coordinatemustbeadjusted.Smallchangesin x will

affectthe longitude,butnotsignificantlychangethelatitude(Figure4.2a). Changesin

they-coordinatehavea similar effectaschangingthez-coordinate,thatis, a deviation

in y adjustslatitude (Figure 4.2b). Without precessionand nutation, the offset in

longitude is the same for both satellites and, therefore, the correction to the x

componentof theinitial conditionswill bethesamefor bothsatellites.

For longitude,unlike in the latitudeadjustment,whentheinitial valuefor x is

changed,the initial longitudevaluealsochanges.This makesananalyticalapproach

for finding the neededx adjustment (_Xo)difficult to obtain. Several different

adjustmentsin the initial x-coordinateweremadeusingthe9 x 9 geopotentialfield.

Theothercomponentswereheldfixed, asthelatitudeerrorhasalreadybeencorrected.

Theresultingchangesin longitudeareplottedagainstthegivenchangesin x, andaleast

squaresquadraticfit wasmadethroughthepointsto determinethe6xothatcorresponds

to _5_.= 0° (Figure 4.3). It was found that the samevalue for _xo canbe usedto

correctthelongitudeoffsetin thesatellites'initial conditionsfor a 36x 36geopotential

field aswasneededfor the 9 x 9 geopotentialfield. This implies that the dominant

termsthatcausethelongitudeoffsetarecontainedwithin the9 x 9 geopotentialfield

andthatthehigherdegreeandordertermshavelittle affecton longitudechanges(i.e.,

theorbitalperioddoesnotchangesignificantly).
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Theinitial conditionsin a9 x 9 geopotentialfield takenfrom theOSU322field

thatwill havea32siderealdayrepeatbothin geodeticlatitudeandin longitude(tothree

decimalplaces)arepresentedin Table4.3a. Theresultinglatitudesandlongitudesfor

eachof the satellitesarealsopresented(Table4.3b). Theseresultsindicate thatthe

satelliteswill havea closureof within 450 meters,evenafter 64 siderealdays(two

completerepeatgroundtrackcycles).

Table4.3a

Initial andFinalConditionsfor the9x 9 Simulation

Repeatinggroundtrack

Leading Satellite

Position(m)

253.7524

-150000.

6515233.9274476

Veloci_(m/s)

Vx 0.0

vy -7816.570937552

Vz -179.497721338

Trailing Satellite rx 253.7524

ry 150000.

6515238.3234627

Vx 0.0

Vy -7816.570937516

Vz 179.5005234656
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Table 4.3b

Frozen Orbits

Latitude and Longitude Values for each Satellite

Initial Lead Satellite Trailing Satellite

Latitude 88.690 ° 88.690 °

Longitude 169.757 ° 349.563 °

Final after 32 Sidereal Days

Latitude 88.691 o

Longitude 169.757 °

88.690 °

349.564 °

Final after 64 Sidereal Days

Latitude 88.684 °

Longitude 169.757 °

88.694 °

349.563 °

The drift rate between the two satellites in the 9 x 9 geopotential field with the given

initial conditions was 0.15564 m/day. Figures 4.4a, 4.4b, and 4.4c illustrate the

relative range, range-rate and acceleration for these initial conditions. Note that the

secular trend between the frozen orbit pair is small, indicating little drift between the

satellites (Figure 4.4a).

The relative motion figures for the non-frozen case, described in Section 3.4

with the 9 x 9 geopotential field, are presented in this section as a comparison to the
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frozenorbit relativemotion. Eventhoughthesatelliteswerecloseto anexactrepeatfor

thefirst 32days,adrift betweenthetwonon-frozenorbitingsatellitesof approximately

-50 m/dayresults. If the z componentof positionfor the leadingsatelliteis adjusted

slightly, thedrift canbeeliminated,but thesatellitewill no longerrepeatasaccurately.

Figures4.5a,4.5band4.5cpresenttherelativemotion after64 siderealdays,andthe

latitudesand longitudesof eachsatelliteareprovidedin Table 4.3c. Clearly, a less

accuraterepeatinggroundtrackresultsfor thetwo,non-frozensatellitescomparedto the

frozenorbit.

Table4.3c

Non-frozenOrbits

LatitudeandLongitudeValuesfor eachSateUite

Initial Lead Satellite Trailing Satellite

Latitude 88.688 ° 88.688 °

Longitude 169.757 ° 349.563 °

Final after 32 Sidereal Days

Latitude 88.689 °

Longitude 169.756 °

88.688 °

349.563 °

Final after 64 Sidereal Days

Latitude 88.814 °

Longitude 169.785 °

88.797 °

349.533 °
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4.4 Non-Polar Adjustments

For this study, the satellites were initially located near the poles, therefore, the

change in radius was approximately equal to the change required in the z-coordinate. If

the initial conditions are not near the pole, then the corrections would have be added

radially to the orbit. Since the orbit plane is mainly in the y-z plane, the x-coordinate

can be neglected.

(6ro) 2 = ((Syo) 2 + (SZo) 2

8zo / 8yo = tan(%)

where % is the initial latitude of the design orbit. The required change in radius is

determined by the previously described method. With two equations and two

unknowns, the change in initial y- and z-coordinates can be calculated regardless of the

initial latitude.

4.5 Sensitivity Study

With the initial conditions from the 9 x 9 geopotential termed "nominal", a

sensitivity study was conducted. Table 4.4 contains the results of several cases that

investigated the sensitivity of the satellites to perturbations in initial position ranging

from one centimeter to ten meters. These perturbations were made to determine the

sensitivity of the relative motion to errors in the initial conditions in order to observe the
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correspondingchangesin the groundtrackof thesatellites. It shouldbenotedthata

changein z,at leastfor a changeno larger than10meters,will not changetheinitial

valuesfor thelatitudeandlongitudeof thealteredsatellite. Onceasatelliteis ahead,or

behind,of its designedtrajectory,it will remainahead,or behind.Therefore,thecases

weredividedinto threegroups. Forthefirst two groups,theleadingsatelliteremained

behindits designedorbit, becausetheperturbationis in thepositivez direction. For the

third group,the leadingsatellitewasaheadof its designedorbit.

Thefirst grouphadaperturbationin thepositivez directionfor theleadsatellite

only, andthe second,trailing satelliteremainsunperturbed.Fourdeviationsfrom the

nominal weremade: +1 cm, +10cm,+1 m and+10m, in thepositivez directionfor

theleadingsatelliteonly.

Forthe+1 cmcase,thefinal conditionsfor latitudeandlongitudewereequalto

the final conditions for the nominal case,to at least three decimal placesand the

groundtrackmaintainedtheof closureof within 100m. A drift rate between the two

satellites of 3.24926 m/day was acquired, compared to 0.155642 m/day from the

nominal case. This drift rate is very small and would bring the two satellites closer

together by only 100 meters in 32 days.

For the +10 cm case, the final conditions for latitude and longitude errors were

0.009 ° and 0.001 °. The groundtrack difference after 32 days has increased an order of

magnitude over the +1 cm case to 1000 m. An acceptable error in the groundtrack

closure is considered to be 10 km [Schutz, et al., 1986]. The drift rate also increased

an order of magnitude to 31.123122 m/day. This would bring the two satellites about
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1000meterscloserthantheirinitial 300km separationdistance.

For the+1m case,theerrorsin latitudeandlongitudewere0.082° and0.007°.

The drift rate increasedanotherorder of magnitudeto 309.852756m/day. The

differencein the groundtracksbetweenthis andthenominaleaseafter32 daysis just

under10kilometers. It shouldbenotedthat this casebrings the groundtrackerrors

closeto the limitationsthattheremustbea 10km closurefor thegroundtrackrepeat.A

one metererror in the initial conditions is the upper limit allowable,basedon the

analysispresentedhere.

The lastcasefor this groupwasa +10m perturbationwhichresultedin latitude

andlongitudeerrorsof 0.864° and0.189°. Thedrift ratewas3097.8527m/day. This

would resultin thesatellitesbeingroughly200km apartafterthirty-two dayswhich is

onehundredkilometers lessthan themission specification. The groundtrackhad a

closureerrorof 100kilometerswhencomparedto thenominal. From theseresults,an

error of only 10 meters in one of the satelliteswould produceunacceptableorbit

conditionsandwouldnotmeetthemissionspecifications.

The secondgrouphadperturbationsaddedto bothsatellites'initial conditions in

the same direction; positive z. Both satellites were traveling behind their designed

orbits, but since the perturbations were equivalent for both satellites, they produced no

net drift rate between them because they are traveling at the same relative rate. The

errors in longitude and latitude remained the same as they were for the leading satellite

from the ftrst group (Table 4.4).
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The third group had equivalent perturbations, but they were applied to the

satellites in the opposite direction. The leading satellite had the z perturbation

subtracted from the nominal initial conditions, increasing the satellite's velocity. The

trailing satellite had the z perturbation added, slowing its velocity. The result was that

the satellites were drifting apart at about twice the rate they would if only one satellite

had the perturbation and the other satellite remained unchanged, as was the case for the

first group (Table 4.4).

From Table 4.4, it can be seen that for the range of the given perturbations, the

results appear to be linear. That is, an order of magnitude increase in the perturbations

results in _m order of magnitude change in latitude errors and drift rate values. The drift

rate between the satellites seems to only depend upon the total distance the satellites are

displaced from the nominal. If both satellites are in error by the same amount and in the

same direction, no drift rate will be generated. The error in repeatability can be adjusted

by correcting the error in position, but the drift rate can be eliminated by either

correcting the offending satellite, or by causing an equivalent error to occur in the

repeating satellite. It also seems to be irrelevant whether the perturbations are positive

or negative as far as the magnitude of the resulting latitude or drift rate errors are

concerned. A positive change in latitude indicates that the satellite is ahead of its

desired final position; a negative change, indicates that the satellite is behind its desired

final position. Though this study was conducted for satellites in a 9 x 9 geopotential

field, studies presented in Chapter 5 indicate that this table is reliable regardless of the

size of the static geopotential field being used to determine the motion of the satellites.



4.6 Range of Reliability of the Linear Approximation

67

Using the nominal conditions for the leading satellite in the 9 x 9 geopotential

field, an analysis of the linear range of the perturbations is presented. This analysis is

to ascertain if a large deviation in the radial direction of the initial conditions will alter

the orbit's ability to remain frozen, and to insure that a perturbation in the initial

conditions will result in a purely linear change in the drift rate and in the latitude error.

The nominal initial conditions were given a perturbation in the positive z-

direction (essentially radially) of a specified amount as indicated in Table 4.5. The

resulting differences in the final conditions from those of the nominal orbit were

computed. The differences of each coordinate were squared and summed, and the

square-root of the result was used as the deviation between the two cases.

Table 4.5

Linear Reliability of Changes to the Initial Conditions

Perturbation in the Initial z-Component

0.01 meters

0.1

1.0

10.0

100.0

1000.0

Position Deviation After 32 Sidereal Days

98.98 meters

989.42

9894.31

98943.1

987113.5

8973198.
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The changein the nominal initial conditionswere increasedby an order of

magnitude,startingatonecentimeterandfinishingatonekilometer. Table4.5contains

theresults. As long asthedeviationsin thefinal conditionsremainproportionalto the

changegivento theinitial conditions,theerror will remainwithin the linear region.

With achangein the initial radial distance of 1000 meters, the errors are entering the

nonlinear region. If the errors in the initial conditions are larger than 1000 meters, then

the technique derived in Section 4.3 to correct the initial conditions may not be reliable.

Even with a perturbation as large as one kilometer, the orbit remains frozen,

since one kilometer is a small percentage change in the semimajor axis. The limitation

on the maximum perturbation before the orbit becomes non-frozen was not investigated

since an error as large as one kilometer is unreasonable as far as the mission

requirements are concerned. The orbits will remain frozen for several orders of

magnitude beyond the acceptable limits for the error permitted in the satellites'

positions, so the frozen orbit appears to be a very stable configuration.

The question of stablity of the frozen orbit due to nonconservative forces was

not investigated in this study, however, the effects of atmospheric drag were

investigated in works by Nickerson, et al. [1978] and by McClain [1987]. They

concluded that atmospheric drag was a devastating problem in maintaining the frozen

orbits integrity; however, this effect should not concern the GRM satellites since they

will have drag compensation system on board.



69

4.7 Correction of Velocity

As described in Section (2.3), the satellites will be initially inserted into a 275

km altitude orbit [Keating, et al., 1985] and after a series of maneuvers, the satellites

will descend to the operational altitude of 160 km. Orbit corrections will be required to

place the spacecraft into the proper mission orbit. Once the satellites are in orbit, an

instantaneous adjustment in position to eliminate the errors in the initial conditions is

not be possible. Instead, an adjustment in their velocities that will correct for any orbit

errors will have to be determined.

When an orbit is frozen and polar, there are no secular or long period trends in

any of the orbit elements, as is in the case of GRM. The only gravitational effects that

appear in the orbital elements for a frozen, polar orbit are short period effects. The

mean orbital elements are constant, are not influenced by long period effects, and

excluding the short period trends, the orbit has the behavior of a two-body orbit. Since

there are no nonconservative forces acting on the proof masses' trajectories, then

energy is conserved. Energy can be approximated as the two-body energy using mean

orbital elements:

E =v2/2- g/r (4.3)

where E is energy, v is the orbital velocity and r is the mean orbit radius. Because the

mean orbital elements for a frozen orbit are constant, then excluding the short period

effects, energy is constant and the variation in the energy equation is then equal to zero.
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5E = 0 = v 5% + _/r2_Sro (4.4)

Again, sincetheadjustmentwill bemadenearthepole,z canbeusedinsteadof

radiusor semimajoraxis. With theinitial configurationof thesatellitesbeingcloseto

the pole, and with the satellitestraveling mainly in the y-z plane,a changein the z

positionproducesa changein they componentof thevelocity. Therefore,thechange

in velocity, _Svo,will be_5_'o.From Equation(4.4), a changein the z position, will

correspondto achangein thevelocity as:

_o = -IM(a2v)5Zo (4.5)

Sincetheorbitis nearlycircular,velocitywill beapproximatelyequaltothefollowing:

_%=-Ia/(a3n) _zo (4.6)

The two-bodymeanmotion is equalto (l.t/a3)1/2,whichwill simplify thechangein the

y componentof velocityto:

8_o= -n 8Zo (4.7)

This relationship between the change in the initial position to the change in the

initial velocity was also determined by Colombo [1984]. From Equation (4.7), setting

5Zo equal to one meter is equivalent to an adjustment in the initial velocity of

0.00119636 m/sec in the positive y direction. For verification, a positive change in the

z direction of one meter was added to the leading satellite. This resulted in a drift
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betweenthe two satellitesof about300 m/dayandcausedtheleadingsatellite to no

longerhaveanexactrepeat(0.086° errorin latitude). With theadjustmentin theinitial

velocity givenabove,thedrift decreasedto about5.6m/dayandtheerrorin latitudefor

the leadingsatellitewas reducedto 0.001°.

Given thatthereis a drift betweenthetwo satellitesandthattheydo notexactly

repeat,a methodfor adjustingtheinitial positionto correctfor thesediscrepancieswas

developedin Section (4.3). Since,during flight, the satellites'positionscannotbe

instantaneouslyaltered,thisnewprocedurewill transformtheneededpesitionalchange

in the z-coordinateto a correctionin the y componentof thevelocity which, unlike

positionalchanges,canbeadjusted.

4.8 An Earlier Determination of Orbital Adjustments

The technique employed to obtain initial conditions that produce an exact

groundtrack repeat requires that the mission continue for thirty-two sidereal days.

Since the initial conditions must repeat after thirty-two days, the desired positions of the

satellites are known at that future time; the position after 32 days can be compared to the

initial conditions and the appropriate adjustments made. This procedure does not

require a priori knowledge of the geopotential which is convenient since the

determination and improvement of the geopotent_al is a primary goal of this mission.

Waiting for thirty-two days, however, may not b,z very practical for the actual mission,

and indeed, once the satellites are operational, only seven days will be available to

correct any discrepancies in the orbit's iritial conditions [Keating et al., 1986].

Consequently, another technique must be u_ed.
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If arepeatinggroundtrackcouldbesimulatedthatwouldbecloseto theactual

groundtrack,thentheerrorsin thesatellites'positionscouldbeapproximatedwithin the

first week of the mission instead of waiting for the entire groundtrack repeat cycle. The

deviations in the actual groundtrack from the designed groundtrack, after only a few

days into the mission, could be used to determine the proper initial condition

adjustments that would produce an exact groundtrack repeat for the actual mission. The

expectation is that, after only a week, the differences between the designed and the

actual groundtracks will not have grown too large to invalidate this assumption.

This approach was attempted by comparing a groundtrack generated from a 9 x

9 geopotential field to a groundtrack from a 36 x 36 geopotential field (both subfields of

OSU322). Results from this comparison are presented in Figures 4.6a, 4.6b and 4.6c.

After only seven days, the differences between the two groundtracks, for the leading

satellite, have grown to 1.6 kilometers (Figure 4.6c). These differences are probably

generated from the order 16 and order 33 harmonic terms, which are in resonance with

the GRM satellite altitude, and are not present in the 9 x 9 field.

The required corrections to the 9 x 9 geopotential's initial conditions to obtain a

repeating groundtrack with the 36 x 36 geopotential.are 8Zl = 3.845514 m and _iz2 =

2.611069 m, determined using the full groundtrack cycle for this simulation of 32

sidereal days. Figures 4.7a and 4.7b show the differences between the actual required

corrections to the initial conditions, and the corrections determined after the specified

number of days for each satellite. These two plots, for each satellites' corrections, are
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nearly identical. Thesefigureshaveanoscillation abouttherequiredsolutionwith a

biasof approximatelyahalf ameter.

A mean error offset of 50 cm is too large to completely eliminate the errors in

the initial conditions, however, these corrections are 85% of the required corrections

and could be used to reduce some of the errors in longitude and decrease the magnitude

of the drift rate. The groundtracks of the actual and the modeled trajectories will have

to be closer to make a proper comparison. To achieve a closer groundtrack, the

principal resonant terms must be included in the model of the simulated groundtrack.

A more representative example for a groundtrack comparison is presented using

the 180 x 180, OSU322 [Rapp, 1981] geopotential field and the 360 x 360, OSU86F

field [Rapp and Cruz, 1986]. The OSU322 field was used to generate the two

satellites' reference orbits that repeat after 32 sidereal days to within two kilometers.

Chapter 5 describes this simulation in more detail. The final conditions from the

OSU322 simulation indicate a closure for the leading satellite of 1.87 kilometers, and a

closure of only 111 meters for the trailing satellite (Table 5.2b). The observations, or

"actual" orbit points, were generated from the OSU86F field which had a groundtrack

closure of over 154 kilometers each. These two geopotential fields have no common

harmonic coefficients, and even have different gravity parameters ( IA_tl = 2.x108

m3/sec 2), as well as different mean equatorial radii ( IAael = 8 m ). In addition, unlike

the previous groundtrack comparison example, these two simulations had different

initial conditions.
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This comparisonis more representativeof the actualmissionsincethe true

satellitemotion will moreclosely follow apathmodeledby a 180x 180field than it

would the36x 36 subfield. In addition,therearenosignificantresonanttermshigher

thanorder 180,wheretheexclusionof resonanttermswasaproblemwith theprevious

comparison.Therefore,thetrajectoriesgeneratedfrom theentire OSU322field were

expectedto becomparableto thetrajectoriesgeneratedfrom theOSU86Ffield.

The initial conditionsandtheresultsfrom thesimulationgeneratedusingthe

OSU322field arepresentedin Table5.2a. Thefiguresof therelativemotionfor this

simulation arealsopresentedin Chapter5 (Figures5.1aand5.1b). This simulation

wasusedasthedesignorbitwhichhadarepeatinggroundtrack.The"actual"trajectory

wasbasedon the OSU86Ffield anddid not havearepeatinggroundtrack. Figures

4.8aand 4.8b illustrate the relative motion for the "actual" trajectory. The initial

conditionsandtheresultsfrom theOSU86Ftrajectoryareprovidedin Table4.6aand

theinitial andfinal latitudesandlongitudesareprovidedin Table4.6b.

Fromthelinear technique described in Section 4.3 calculated using the entire 32

sidereal days, the actual corrections needed in the initial conditions for the satellites in

the OSU86F field to cause them to repeat to within the one kilometer were 16.06954

meters for the leading satellite and 16.62127 meters for the trailing satellite. The

differences in latitude as a function of time between the repeating, design orbit and the

observed, actual orbit were computed, from comparisons made every 400 seconds.
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Table4.6a

Initial Conditionsfor OSU86FSimulation

NonrepeatingGroundtrack

Leading Satellite

Position(m)

rx 262.16184162

ry -150104.5682242

6515208.810795

Velociw(m/s)

Vx -0.048185197

Vy -7816.577574349

Vz -179.577052647

Trailing Satellite rx 262.89992177

ry 149884.9023112

6515238.3234627

Vx -0.0447663774

Vy -7816.570937516

Vz 179.5005234656

Final Conditions for OSU86F Simulation

Nonrepeating Groundtrack

Leading Satellite rx 258.98730736

ry -308288.03591398

6508774.1727936

Vx 0.02556299312

vy -7810.9707021185

Vz -369.3070304526

Trailing Satellite rx 256.16572671

ry -14138.05881167.

6516015.8600261

Vx -0.0431347331

vy -7819.700419631

Vz 172.9347354153
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Table 4.6b

Latitude and Longitude Values for each Satellite

from the OSU86F Simulation

Initial Lead Satellite Trailing Satellite

Latitude 88.6888 ° 88.69072 °

Longitude 169.76012 ° 349.55956 °

Final after 32 Sidereal Days

Latitude 87.3059 °

Longitude 169.70819 °

89.87647 °

170.6999 °

The required changes in the initial conditions in the radial direction are provided in

Figures 4.9a and 4.9b for each satellite. The true drift rate between the two "actuar'

satellites was 151 m/day, determined from the relative range for the entire 32 days

(Figure 4.8a). The drift rates used for the daily predictions were computed with data as

it was accumulated, at the end of each sidereal day the drift rate was updated. These

drift rates are tabulated in Table 4.7.
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Table4.7

Drift Rate Values for the Given Number of Days

Drift Rate (m/day)

1 296.8

2 251.622

3 205.94

4 180.996

5 187.3

6 196.29

7 192.27

8 178.685

The mean values from Figures 4.9a and 4.9b after eight days were 16.057

meters for the leading satellite and 16.775 meters for the trailing satellite. These results

indicate that a repeating groundtrack generated by a 180 x 180 field can sufficiently

predict the corrections needed for a significantly larger gravity field in under 8 days.

By using these mean values from the daily calculations to correct the initial conditions

of the actual orbits, there will be a resulting groundtrack closure of under one kilometer

for each satellite.
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4.9 Summary

In this chapter, it has been shown that corrections to the satellites' initial

conditions can be predicted after one complete repeat of the groundtrack. With only

one week of observations, accurate predictions of the needed corrections can be

determined if a suitable design orbit is available. During the actual mission, a one week

set of data can be collected and the calculated corrections to the initial conditions can be

numerically integrated forward to the current mission time to determine the corrections

to the satellites' orbits.

The corrections to the initial conditions are linear if the perturbations are

generated by a static geopotential field. In Chapter 6, temporal perturbations to the

satellites' motion are investigated. The errors in the latitude and longitude produced by

the temporal perturbations may not comply with the linear prediction of latitude and

longitude errors, or the required radial adjustments that were presented in Table 4.4.
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Figure 4. la

Satellites are behind the desired location
z must be decreased to increase speed of satellites

1'
X

Y

Figure 4. lb

Satellites are ahead the desired location
z must be increased to decrease speed of satellites

o indicates the desired locations of the satellites
x indicates the actual locations of the satellites
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Figure4.2a

Changein x-coordinatefor anorbit
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X

Figure 4.2b

Change in y-coordinate for an orbit

in the y-z plane changes latitude
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CHAPTER5

ANALYSIS OFGEOPOTENTIALRESEARCHMISSIONSIMULATION

5.1 Introduction

The results of a Geopotential Research Mission simulation are presented in this

chapter. The simulation spans a 32 sidereal day mission lifetime, the time interval

selected for one complete groundtrack repeat. An analysis of the orbit residual errors

and a nominal gravity model to reduce the residuals as specified by the mission

requirements given in Section 2.5 have also been determined.

Identification of the dominant resonant coefficients contributing to the satellites'

motion was investigated. Significant effects due to resonance were found to result

from spherical harmonics of degree and order greater than 36. The effect that the

resonant terms have on the relative motion and on the repeatability of the groundtracks

is discussed as well.

This simulation considered artificial measurement data that can be used to test

the proposed techniques, discussed earlier in Section 2.3, to recover the Earth's gravity

field. The measurement data is the relative range-rate between the two satellites.
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Although only the gravational forces generated by the Earth are included in the

simulation described in this chapter, the effects from other forces, as well as kinematic

effects will be discussed in Chapter 6.

A preliminary simulation of the GRM satellites' motion was performed on the

CRAY X-MP/48 computer located at Cray Research Incorporated, Mendota Heights,

Minnesota, in November, 1985. This simulation used Colombo's initial conditions,

given in Chapter 4. The results from this earlier simulation were described by Schutz,

et al. [1986]. The closure of the groundtracks in the Mendota Heights simulation were

2.36 krn and 4.59 km for the leading and trailing satellites, respectively, which were

well within the 10 km closure criteria. It was found that the satellites drifted apart at the

rate of 93 m/day in that simulation. A new simulation was performed for this study

which used an improved set of initial conditions with the expectation that an improved

groundtrack closure and a reduction in the drift rate between the two satellites would

occur. This new simulation is described in the following sections.

5.2 Description of Simulation

The numerical computations for the new simulation were performed on the

CRAY X-MP/24, located at the University of Texas System Center for High

Performance Computing. The amount of computer time required for the simulation

was approximately 5 hours and 40 minutes for the 32 sidereal day simulated mission.

The numerical technique for integrating the satellites equations of motion was

the Encke method, described by Roy [1978] and Lundberg [1985], which used a



99

referenceorbit basedonasecularlyprecessingellipsewith ananalyticalrepresentation.

Thedifferencebetweentheanalyticalreferenceorbit andthetrueorbit is referredto as

the"Enckevector",whichwasintegratedin placeof theactualsatellitestate.A primary

advantage of this method is that it reduces round-off errors associated with numerical

integration [Lundberg, 1985]. The reference orbit characteristics are provided in Table

5.1, and were selected to produce a small magnitude Encke vector without secular

trends.

Table 5.1

Secularly Precessing Reference Orbit for Encke Method

Lead Satellite

a = 6523600.811305 m

e=0.

i = 90 °

f_ = 90 °

CO= 0 °

M = 1.59331106462 rad

= o tad/day

_b = 0 rad/day

= 0.0011963632130 rad/day

Trailing Satellite

a = 6523599.627289 m

e=0.

i = 90 °

f_ = 90 °

co=O °

M = 1.547312542033 rad

= 0 rad/day

_b = 0 rad/day

= 0.00119636336526 rad/day
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The integrator is a class 2, for second order ordinary differential equations,

fixed-mesh, multistep algorithm, of order 10 as described by Lundberg [1985]. The

integration step size was five seconds, chosen to be small enough to detect the highest

degree harmonics used in the simulation [Schutz, et al., 1986].

The 180 x 180 OSU322 gravity field described in Section 1.2 was modified by

including terms out to degree 300 and lower order harmonics to 10. The force model

used the gravity parameter of 3.9860064 x 105 km3/sec 2 and the mean equatorial radius

of 6378.145 km. The epoch time was chosen to be 2445700.5; midnight, January 1,

1984, to be consistent with the previous simulations. The sidereal hour angle was

100.1135613 ° and the Earth's rotation rate was held constant at 7.29211585531 x 10 .5

rad/sec.

For consistency with the previous work in this report and the adopted models, a

new set of initial conditions was calculated for the simulation. These new initial

conditions were based on the updated values of the gravity parameter and the mean

equatorial radius, as well as the 36 x 36 OSU322 subfield. These initial conditions,

calculated by the method described in Section 4.3, were expected to lead to a smaller

groundtrack closure than resulted from the initial conditions derived by Colombo. For

the groundtrack to repeat to within 10 kin, the error in the geodetic latitude must be less

than 0.1 °.

The instantaneous relative range was calculated by subtracting the two satellites'

instantaneous states at each time point. The relative range vector is:
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p = r1 - r2 (5.1)

where r 1 is the position vector of the leading satellite and r 2 is the position vector of the

trailing satellite. The relative range-rate, 1_,is calculated by:

I_ = P • I_ (5.2)

P

Figures 5.1 a and 5.1 b show the relative motion between the two satellites from

the simulation. Figure 5.1a illustrates the relative range difference which was

determined by subtracting the actual distance between the two satellites from their

desired average separation distance of 300 km. A nonlinear trend was present, which

was due mainly to resonant terms of the order 82 terms, though other resonant terms

have a contribution. Because the initial conditions were created to be an exact repeat

with no drift for a 36 x 36 gravity field, a secular trend exists in the relative range

measurements when the higher harmonics were included. For this same reason, the

satellites didnot repeat exactly. The initial and final conditions for both satellites are

provided in Table 5.2a. The satellites had a drift rate of approximately 41 m/day. The

error in the groundtrack repeat was less than two kilometers for the leading satellite and

approximately 100 meters for the trailing satellite; well within the closure criteria

specified earlier. The initial and final geodetic latitude and longitude after 32 sidereal

days are presented in Table 5.2b. The drift rate between the satellites and the latitude

errors can be eliminated by an adjustment in the initial conditions (as described in

Chapter 4), but the periodic trend due to the resonant terms cannot be removed.
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Table5.2a

Initial Conditionsfor OSU322Simulation

RepeatingGroundtracks

Leading Satellite

Position(m)

rx 253.7524

ry -150000.0000

6515237.772962

Veloci_(rn/s)

Vx 0.000000

Vy -7816.570937552

Vz -179.497721338

Trailing Satellite rx 253.7524

150000.000O

6515240.934532

Vx 0.000000

Vy -7816.570937516

Vz 179.5005234656

Leading Satellite

Final Conditions for OSU322 Simulation

Repeating Groundtracks

rx 255.2931288

ry -147951.4011902

6513972.4970525

Vx 0.0799469041

Vy -7818.18594707

Vz -177.5348494778

Trailing Satellite rx 253.5177113

ry 149988.6625145

6513896.6701621

Vx 0.0214660832

vy -7818.19069170

Vz 179.0361331515
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Table5.2b

LatitudeandLongitudeValuesfor EachSatellite

.Initial Lead Satellite Trailing Satellite

Latitude 88.6888 ° 88.69072 °

Longitude 169.76012 ° 349.55956 °

Final after 32 Sidereal Days

Latitude 87.707 °

Longitude 169.759 °

88.689 °

349.563 °

5.3 Investigation of the General Behavior

The simulation specification that the satellites' orbit complete 525 revolutions in

32 sidereal days yields a period for the satellites of approximately 88 minutes. In one

sidereal day, the satellites will have completed about 16.40624 revolutions and the

orbits will be in resonance with any harmonic terms whose periods are commensurate

with integer multiples of the satellites' daily revolutions [Kaula, 1966].

From Equations (3.2), the periods of the resonant terms can be determined.

The denominator of these equations is a function of the frequency associated with a

particular harmonic coefficient. The frequency equation for a particular perturbation is:
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= (/-2p)_0+ (t-2p+q)liI + rn(_--O) (5.3)

where the parameters are defined earlier in Chapter 3 [Kaula, 1966]. If this

denominator term approaches zero, the orbit is in resonance with the harmonic term of

degree I, and order m. For this particular mission, the time rate of change for the

argument of perigee, cb, is equal to zero because the orbit is frozen; and the nodal rate,

_, is zero because the orbit is polar. The only remaining terms are the ones associated

with time rate of change of mean anomaly and the rotation rate of the Earth. The closer

the integer multiples of/f/are to the values for the integer multiples of sidereal days, the

deeper the resonance associated with the particular harmonic term becomes, and the

more significant that term will be in the satellite's motion.

Table 5.3 illustrates the order of the harmonic terms whose periods are in

resonance with the GRM satellites' periods. The terms that generate the deepest

resonance are under order 180. The resonant terms, in order of the largest individual

effect, are orders 82, 33, 49, 164, 115, and 16. The order 82 terms were dominant,

with an amplitude of over 800 meters and have a period of approximately 32 days. The

effects generated by each of the dominant resonant terms are investigated separately.
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n

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

10

10

Table 5.3

Resonant Terms Plus Side Bands

= (/-2p)_o + (l-2p+q)i_l + m(_-O)

n (16.4062414) - m = 1/D

n = l-2p+q

m 1_1!2

16 0.4062414

17 0.5937586

32 0.8124828

33 0.1875172

49 0.2187242

50 0.7812758

65 0.6249656

66 0.375035

82 0.031207

83 0.968793

98 0.43744

99 0.5625516

114 0.8436898

115 0.1563102

131 0.2499

132 0.7500688

147 0.6561726

164 0.062414

165 0.937586

D (Days)

2.46

1.684

1.230795

5.33284

4.57196

1.279957

1.6

2.666666

32.04409

1.032212

2.286027

1.777614

1.185269

6.397535

4.00

1.333211

1.523989

16.022

1.066568
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With the sameinitial conditionsusedfor thesimulation,the 36x 36OSU322

subfieldwasthebaselinegeopotentialfield andindividual orderresonanttermswere

addedto observetheireffects. Only thefive dominanttermsassociatedwith harmonics

of resonantorder were investigated. The relative motionsplots of the results are

included,andTable5.4containstheresultsof theeffectstheresonanttermshadon the

final longitudeandlatitudevalues. Thezonalharmonicsto 300werealsoincludedin

this investigationto insurethat no long periodic effectsdue to odd zonalharmonics

remain.

Table5.4

EffectsonFinalLatitudeandLongitudedueto Resonance

Satellite 1 Satellite 2 Drift rate

Order 6(lat°/long °) 8(lat°/long °) (m/day)

82 0.172 / 0.01 -0.146 / 0.01 -116.44135

33 -0.123/-0.009 0.134 /-0.008 -36.07876

49 0.057 / 0.003 -0.052/-0.003 -14.85071

115 0.001 / 0.0 -0.004 / 0.0 15.09051

16 0.007 / 0.0 -0.005 / 0.0 -1.828319

164 0.003 / 0.0 -0.006 / 0.0 14.789918

zonals to 300 -0.029/-.003 0.031/-0.002 -0.0243366

Having a period of 32.044 days and an amplitude of 806 meters, the harmonic

terms of order 82 caused the deepest resonant effect. With a 36 x 36 plus order 82
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geopotentialfield, thesatelliteshadlatitudeerrorsof 0.172° for the leadingsatelliteand

0.146° for the trailing satellite. A drift betweenthe satellitesof-116.44 m/day was

produced. The relative motion is illustrated in Figures5.2aand 5.2b. The 32 day

periodcannotbe seenclearly in therelativerangebecauseof the largeseculartrend.

With a slightadjustmentin theinitial conditions,however,therelativerangehistorycan

beadjustedto havethecharacteristicssimilar to the full field's relative range(Figure

5.2c). This similarity demonstratesthat the order 82 resonancewas the major

contributorto thenonlineartrendin therelativerangeshownin Figure5.la.

The secondmost dominant resonantharmonics were the order 33 terms

(Figures5.3aand 5.3b). The period associatedwith this order wasonly 5.33days

but, theyproducedanamplitudeof 83metersin therelativerange. Theseharmonics

causedthesatellitesto lag behindarepeatgroundtrackby 0.123° in theleadingsatellite

and0.134° in thetrailing satellite.Thesatellitesdrift apartat therateof 36.08m/day.

Theorder49 terms,with aperiodof 4.57days,wereconsideredthenextmost

dominant (Figure 5.4aand 5.4b). Even thoughthey had an amplitudeof only 19

meters,they causeda deviationin thegroundtracksof 0.057° and0.052°;which was

thethird largestchangein latitude. Thedrift ratecausedby addingthis orderto the36

x 36 field was-14.85m/day.

The third highestamplitudeof 40.65meterswasdueto the resonanttermsof

order 164terms(Figure 5.5aand 5.5b). Thesetermshavea periodof 16.022days,

half theperiodof theorder82 terms. However,theeffecton thethegroundtrackwas

only 0.003° in latitudefor the leadingsatelliteand0.006"for thetrailing satellite. The
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drift ratefrom thesetermscausethesatellitesto approacheachotherat therateof 14.85

m/day. Although these terms had little effect on the orbits repeatability, the magnitude

of the amplitude of their oscillation was relatively large, thereby causing these terms to

be significant, even though they are of high degree.

The order 115 terms had a larger effect on the satellites motion than the order 16

terms, but both terms contributed very little compared to the effects of orders 82, 33,

49, and 164. The order 16 terms were included because they are within the nominal 36

x 36 field and do not add to the overall size of the geopotential fields when included,

and the order 115 terms were included because they had a larger effect than the order

16. The order 16 terms have a period of 2.46 days, with an amplitude of 10.12 meters

(Figure 5.6a and 5.6b). The order 115 terms have a 6.4 day period and an amplitude

of 17.64 meters (Figure 5.7a and 5.7b).

Finally, the effect of the zonal harmonics up to degree 300 were investigated to

insure that no secular trend was generated by the odd zonal harmonics. The satellites

geodetic latitude disagrees with the repeating path by -0.029 ° and -0.031 ° for each

satellite. This equates to an error of about three kilometers on the Earth's surface, and a

drift rate of less than -0.024 m/day was incurred between the satellites. The odd zonal

harmonics produced a long period of 79 days, thus an effect with this period might

appear to be secular in the in a 32 day time interval. However, with a drift rate of only

0.024 m/day, the amplitude of this long period oscillation will be quite small, fielding a

maximum possible amplitude of only two meters. The conclusion can be made that the

long periodic effect due to the odd zonal harmonics have been eliminated by selecting a

frozen orbit that was based on zonal harmonics to J9 only.
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5.4 Reduction of Residuals

The simulated ephemerides for one of satellite described in Section 5.2 was

taken as a set of observations for the program UTOPIA, which performed a least

squares fit of the observation data. The observations were the set of inertial (J2000),

geocentric values of the position vector of the leading satellite, Yi, where i is the time of

the observation. The calculated set of observations are G( Xi*,ti ), where Xi*, is the

nominal state of the satellite as it travels along the path of the orbit determined by the

specified geopotential model [Tapley, 1972]. The difference between the observations

for the leading satellite, provided by the simulation, and the calculated set of

observations of the leading satellite are the observation residuals, r i:

ri = Yi - G(Xi*,ti ) (5.4)

To reduce the magnitude of the residuals, either the model can be improved by

altering the values assigned to the gravity coefficients, expanding the model by

including more terms that contribute to the satellite's motion, and/or by changing the

initial conditions. Since the simulation that generated the set of observations used only

the forces generated by the Earth's geopotential field, these will be the only forces

included in the nominal model.

The classical orbit determination technique of least squares was used to

determine a nominal geopotential field that reduced the residuals to within the mission

specifications. The specifications, given in Section 3.4, are 100 meters in the radial
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direction,300metersin thetransversedirection,and300metersin thenormaldirection

[Keating, et al., 1986]. These are the largest permissible errors in the satellites'

positions that will allow the recovery of the Earth's geopotential field to the desired

resolution. In addition, 99.98% (or 3a) of the residuals must be within these

specifications. It is desired to use the smallest geopotential field for the nominal model

that will cause the residuals to be under the mission specifications in order to minimize

the computational effort. The nominal geopotential model was designed to reduce the

residuals to a level that a more efficient recovery technique could be used to further

refine the geopotential model.

To reduce the residuals, the initial conditions can be estimated by performing a

least squares fit with the observation data None of the harmonic coefficients were

estimated, and no resonant terms were included in the baseline model. The radial

component of the residuals varied between ±200 meters and the normal component

varied between ±100 meters. The transverse component of the residuals varied between

-+.4500 meters, indicating that the estimation of the initial conditions alone will be

inadequate for a 36 x 36 geopotential field (Figure 5.8a, 5.8b and 5.8c). From the

Figure 5.8b, a 32 day period can clearly be seen, along with an approximately 5.5 day

period superimposed. These two periods were caused by resonant coefficients of order

82 and order 33. Since the residuals were not within the mission specifications, the

coefficients in the gravity model must also be estimated.

It is desired to use the minimum number of coefficients above the 36 x 36 field

as possible. The resonant coefficients, in order of their greatest effect that were
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candidatesto beestimatedwere82,33,49, 164,and16. Only thefirst two pairsof the

harmonic coefficients were used,which when "tuned" along with estimating the

position and velocity, produce the best fit to the observation file generated by the full

OSU322 gravity field simulation. With the simulation and the estimated model having

the same OSU322 36 x 36 subfield, the importance of the resonant terms can be

illustrated. The results from estimating the resonant terms are presented in Table 5.5.

This table includes the root mean squared values (RMS), as well as the maximum

magnitudes the residuals obtained.

The 36 x 36 nominal model was expanded to include the estimation of the first

two pairs of order 82:Cs2,82 and Ss2,s2, and C83,82 and $83.s2 (Figure 5.9a, 5.9b

and 5.9c). In the estimation of these four coefficients, not only will they need to

account for the differences in the two models used, but they will also need to absorb the

effects of the omitted order 82 coefficients. An a priori covariance was assigned to the

estimated harmonics using Kaula's rule:

o= -.+10-5

where I is the degree of the harmonic and o is the standard deviation [Kaula, 1966].

The residuals have been reduced to be within 120, 940, and 70 meters in the radial,

transverse, and normal directions. Thus, the addition of the order 82 terms in the

estimation has improved the residuals by a factor of four in the transverse direction, but

the residuals were still too large, consequently, the order 33 terms were included.
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Order

82

Table 5.5

Reduction of residuals

OSU322 36 x 36 Geopotential field

RMS (m) Largest ( m )

R 32.0 117.137

T 438.12 940.62

N 25.34 70.73

33

R 28.68 106.93

T 155.31 444.86

N 17.408 52.79

49

R 27.82 103.98

T 101.42 314.79

N 15.76 50.755

16

R 27.822 104.07

T 101.25 309.31

N 15.84 51.97

164

R 27.19 107.18

T 75.63 312.60

N 15.82 52.36

The first two pairs of geopotenfial coefficients from order 33 were estimated

along with the first two pairs of the order 82 terms. The residuals were reduced by a

factor of two from estimating order 82 alone (Table 5.5), and for this model, were

within 107 meters in radial, 450 meters in transverse, and 53 meters in the normal

directions. Figures 5.10a, 5.10b and 5.10c are the radial, transverse and normal
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residualsversustime. FromFigures5.10b,thatillustratethetransverseresiduals,a 16

day periodcanbe seen,causedby theorder 164terms. Superimposedon the larger

amplitude 16dayperiod is a smalleramplitudeoscillation from the order 49 terms.

Since the order 49 of lower order than 164, then to savecomputationtime and to

furtherreducetheresiduals,theorder49coefficientpairswereestimatedin preference

to theorder164terms.

The estimationof the first two coefficient pairs of order 49, aswell asthe

previousharmonicterms,reducedtheresidualsto within 104m, 315m, and51 m in

theradial, transverse,andnormaldirections(Figure5.1la, 5.1lb and5.1lc). The 16

day period is clearly seenin the transverseresiduals(Figure 5.11b), but since the

residualswerecloseto themissionspecifications,estimationof thetermsashigh asthe

order 164termsin themodelmaybeunnecessary.Instead,thefirst two pairsof order

16wereestimated,becausetheorder16termsarewithin thenominal36x 36.

Estimatingthefirst two pair of theselow orderresonantcoefficientsdecreases

theresidualscloser to the3c_bandrequiredfor thegeopotentialrecovery(Figure5.12

a, 5.12band5.12c). The maximumamplitudesof theseresidualswere 104m, 310m

and52m. Themeanvaluesfrom theresidualsareprovidedin Table5.5which indicate

thaton theaverage,the inclusionof theorder16termsin themodelhelps,but to avery

smalldegree.

Theorder 164terms,thoughadeeperresonantorder,werethelastcoefficients

to be included in the nominal gravity model. Though the maximum amplitudes

increasedsomewhatfor theresiduals,themeanvaluesdecreased,andfor thetransverse
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residuals, they were decreasedby a fourth (Figure 5.13a,5.13b and 5.13c). This

indicatesthat theorder 164termsmay needto beincludedwhenthebaseline36x 36

geopotentialfield isotherthantheOSU322gravityfield model.

Since,in the actualmission, the true geopotentialfield will be unknown, it

couldbeunrealisticto employthesamesubfieldthatgeneratedthesimulationto reduce

the residuals. Therefore,the OSU322's36 x 36 gravity field wasreplacedwith the

GoddardEarthModel GEM10Bin orderto haveaperturbationin thebaselinegravity

field. The samegravity parameterof 3.9860064x 105km3/sec2 and the mean

equatorialradiusof 6378.154km wereusedfor this analysis.By estimatingthesame

gravityharmonicsthatwereestimatedusingtheOSU322field, theresidualscouldonly

bereducedto within 500metersin theradial direction,1100metersin thetransverse

direction,and64metersin thenormaldirection(Figure5.14a,5.14band5.14c).

It appearsthatthereis too muchdisparitybetweenthetwogeopotentialfieldsto

only estimatethesamefive pairsof coefficients. To adequatelyreducetheresiduals,

additionalharmonictermswithin the36x 36 field mustbe included. Theevenzonal,

J2,wasthenestimatedwhichcausedadramaticdecreasein theresiduals,but theradial

termhadarather largebiasin the negativedirection (Figure5.15a,5.15band5.15c).

With the inclusionof theodd zonal,J3,thebiaswaseliminated,andit furtherreduced

theresidualsto within themissionspecifications(Figure5.16a,5.16band5.16c).The

complete set of coefficients that were estimatedare: (82,82), (83,82), (49,49),

(50,49), (33,33), (34,33), (16,16), (17,16), (164,164), (165,164), Jz,and J3. It is

important to note that the estimated coefficients are regarded as parameters to adjust in

order to produce a nominal orbit with residual errors less than the mission
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specifications.Theseparametersdonotrepresentanimprovedor evenageophysically

meaningfulsetof coefficients.

From theresidualsin thetransversedirection,aperiodof approximately1.68

dayscanbedetected(Figure5.16b).Thisperiodwasgeneratedby theorder 17terms,

a side bandof thedeeperresonantterms,of order 16. Eachof the deeperresonant

coefficientshavesidebandsassociatedwith themthat arein weakresonancewith the

satellite'sorbital period. For adifferent simulation,theseweakerresonanttermsmay

needto beincludedin themodelin orderto properlyreducetheresidualsto the levelof

themissionspecifications.

5.5 Summary

The conclusions drawn from the experiments described in this chapter indicate

that there are significant gravity effects due to terms of degree and order greater than

36. To meet the mission specifications for a nominal geopotential model, the entire 36

x 36 field does not need to be estimated, but selected higher order terms will require

adjustments. If the mission specifications become more constrained, then more terms

may need to be estimated in order to create an adequate nominal gravity model. For the

error model considered for this study, the dominant resonant terms and the first two

zonal harmonics are the minimum number of gravity terms needed to establish a

nominal geopotential model.

Only the ftrst two pairs of each of the coefficients were estimated. Pairs of

coefficients were estimated because the odd degree terms have a different frequency
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thantheevendegreetermsfor aparticularorder. If anattemptis madeto estimatemore

pairsof coefficientsof thesameorderthentheindividualharmoniccoefficientsmaynot

be separable. Insteadof estimatingmore terms of the sameorder to reduce the

residuals, anotherorderof coefficientsshouldbe includedin themodelor theapriori

valuefor thecoefficientscouldbeincreased.

Theharmoniccoefficientswereestimatedfor thetwo satellitesseparately,both

coming well within the limits given the residuals. Using the leading satellite's

geopotentialfield estimatedspecificallyfor thatsatellite'ssimulatedtrajectory,only the

positionandvelocity of trailing satellitewereestimated.Theresidualswerewithin 3_

specificationsof 100m, 300 m, and 300 m for the radial, transverse,and normal

componentsof theresiduals.This resultindicatesthatonly onegravity field needsto

bedeterminedandthatthis field will besuitablefor bothsatellites.
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from OSU322. No resonant terms were estimated.



133

RESIDUALS BETWEEN FULL FIELD AND 0SU322

NO RESONANCE TERMS ESTIMATED

0
0

36X36

ID

¢;
0
O-
qD

Z

0

36.0

Figure 5.8b

Transverse difference

Residuals between simulation and the 36 x 36 gravity field

from OSU322. No resonant terms were estimated.



134

RESIDUALS BETWEEN FULL FIELD AND 0SU322 36X36

NO RESONANCE TERMS ESTIMATED
o

©.l

o

o
Io

o-

la.I

Z
I.iJ
OC
LLJ 0

b-c_"
la_
H
t-t

...j o

(3)
Z

o

T,

o

¢;
ed

"_o.o_" 6:o li.0 l&.0 =_.0
TIME ( DAYS )

30.0 36.0

Figure 5.8c

Normal difference

Residuals between simulation and the 36 x 36 gravity field

from OSU322. No resonant terms were estimated.



135

RESIDUALS BETWEEN
RESONANCE

O

FULL FIELD AND 0SU322
ORDER 82 ESTIMATED

36X36

0

6:0 I:Z. 0 18o 0 24,. 0 36.0

TIME ( DAYS )

36.0

Figure 5.9a

Radial difference

Residuals between simulation and the 36 x 36 gravity field
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Residuals between simulation and the 36 x 36 gravity field

from OSU322. Resonant order 82 was estimated.
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Transverse difference

Residuals between simulation and the 36 x 36 gravity field

from OSU322. Resonant orders 82 and 33 were estimated.



140

RESIDUALS BET_'_EEN FULL FIELD AND 0SU322 36X36

RESONANCE ORDERS 82 AND 33 ESTIMATED

0

0

o
t,_
C)
Z
W
n,,,
w o

.-

o

F-I

C_

,--I 0

0
Z

0

T"

0

'fo.o 6"0 12.0 18.0 24.0 30.0

TIME ( DAYS )

38.0

Figure 5.10c

Normal difference

Residuals between simulation and the 36 x 36 gravity field
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Residuals between simulation and the 36 x 36 OSU322 gravity field
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Residuals between simulation and the 36 x 36 OSU322 gravity field
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Residuals between simulation and the 36 x 36 GEM10B gravity field

Resonant orders 82, 33, 49, 16 and 164 were estimated.
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Residuals between simulation and the 36 x 36 GEM10B gravity field

All resonant terms were estimated plus J2.
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CHAPTER 6

THE EFFECTS OF TEMPORAL PERTURBATIONS

6.1 Introduction

The previous chapters described the effects of only the Earth's static gravity

field on the motion of the GRM satellites, with no other perturbations considered. The

perturbation study presented in this chapter is only concerned with changes in the orbits

of the proof masses, therefore, only conservative forces are examined. The effects of

atmospheric drag, Earth albedo, and solar radiation pressure are excluded by the

assumption in this investigation that the disturbance compensation mechanism removes

all nonconservative force effects.

A comparison was made between the nominal case and the nominal case plus

the effect due to a specified perturbation. The nominal case was defined in Chapter 4 as

a groundtrack that repeated exactly, generated with a 9 x 9 OSU322 geopotential field;

furthermore, there was no drift between the satellites, and the orbits were frozen. The

difference between the two cases' relative range-rate was used to determine the

magnitude of the particular perturbation in terms of its affect on the measurement

signal, and the resultant errors incurred if these effects are omitted from the model. The

159
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perturbationsin the satellites'motion thatwereexaminedare: precession,nutation,

polar motion, solid Earthtides,oceantides,lunar, solar,planetary,relativity andthe

Moon'seffecton theEarth'soblateness.

The results from eachof theseeffects will vary dependingon the initial

geometry,or on theepochtimeused.Undercertainconditions,theperturbationscould

contribute less than the +--1l.tm/secprecision level of the relative range-rate

measurements(Section 2.4). If a secularor periodic change in the range-rate

differencesexiststhatresultsin themagnitudebecominggreaterthan--+1_trn/secin six

monthstime,thenthateffectmustbeaccountedfor in themodeling.

The software used to make the comparisonof the individual effects was

UTOPIA. Thevariousmodelsusedin UTOPIA to generatetheeffectsaredefinedin

thischapter.

6.2 The Effects of Precession, Nutation and Polar Motion

Precession is caused by the gravitational attraction of the Sun and the Moon

and to a lesser extent, the planets on the oblate Earth. This gravitational attraction

causes the Earth's pole to have a westward precession with a period of about 26,000

years [Roy, 1978]. Precession is the motion of the Earth's mean pole around the

inertial Z axis, or ecliptic pole [Cappellari, Velez, and Fuchs, 1976].

Nutation is caused by the inclination of Moon's orbit to the ecliptic plane and

the lunar gravitational interaction with the Earth's oblateness. Nutation is periodic
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ratherthansecular,andoscillatesabouttheprecessionalpathwith adominantperiodof

about18.6yearsandanamplitudeof aboutninearcseconds(Figure6.1) [Cappellari,et

al., 1976].

The standard epoch of the fundamental astronomical coordinate system used in

UTOPIA was Julian Date 241545.0 (January 1, 2000, 12h), referred to as Epoch

J2000.0. The rectangular, inertial, geocentric coordinate system defined by the mean

equator and equinox of J2000.0 has an X and Y axes located in the Earth's equatorial

plane. The X-axis is along the vernal equinox of J2000.0 and Z-axis is perpendicular

to the equatorial plane. This coordinate system is fixed in space, is not influenced by

precession, nutation or polar motion, and will be referred to as the Mean-2000

coordinate system.

The mean-of-date coordinate system is defined by the addition of precession to

the inertial coordinate system [Cappellari, et al., 1976]. The initial location of this

coordinate system in space will depend on the epoch date used; for the study reported in

this chapter, the epoch date was January 1, 1984. The X-axis is directed towards the

vernal equinox of the epoch date. Because of precession, the equatorial plane will be

slightly different than the Mean-2000 equatorial plane, therefore, the Z-axis is different

as well.

With the inclusion of nutation, the true-of-date coordinate system is defined

[Cappellari, et al., 1976]. The slight changes in the mean-of-date and the true-of-date

from the inertial system will effectively shift the orientation of the geopotential field in

space, and therefore, change the forces acting on the satellites. As with the mean-of-
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datesystem,theequatorialplanehasbeendisplaceddueto precessionandnutation.

Whenprecessionandnutationarenotconsidered,thentheMean-2000,mean-of-date,

andtrue-of-datesystemsareall equivalentcoordinatesystems.

To investigatethekinematiceffectson thesatellites'relativemotions,the initial

conditionswere formulatedin themean-of-date,or true-of-date(whennutationwas

included), coordinatesystems.This choicekeepsthe satellitesin the samerelative

positionsto thenorthpole on the selectedepochdatefor which they wereoriginally

derived,therebyproducinga bettergroundtrackrepeatthanwould occurif the initial

conditionswereplacedin theMean-2000coordinatesystem.

Theprecessionaleffectson thesatellites'relativerange-rateareshownin Figure

6.2a. Initially, thedifferencein therelativerange-rateis zero. As time progresses, the

mean-of-date system moves with respect to the Mean-2000 system, and the changes in

the force field due to the spatial change in the geopotential orientation begin to

accumulate. The effects due to the inclusion of precession in the kinematic model

increase to a magnitude of 35 _tm/sec in the tru'st 32 sidereal days. Since this is larger

than the 1 Ixm/sec requirement, precession will clearly need to be included in the model.

Adding nutation to the kinematic model requires the initial conditions to be

placed in the true-of-date coordinates. Nutation increases the difference in relative

range-rate to a magnitude of 600 _tm/sec, but with an apparent decrease in amplitude

over the 32 day period (Figure 6.2b). Because nutation oscillates about the

precessional path, then only when the oscillation intersects the precessional path will

the true-of-date and mean-of-date systems be coincident. Since the epoch time was not
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chosenfor this to bethecase,thereis asuddenchangein magnitudefor thedifference

in relativerange-ratewhennutationis includedin thekinematicmodel.

Polar motion, which is the motion of angularvelocity vector of the Earth

relativeto thebodyfixed z-axis,wasalsoinvestigatedandwasincludedalongwith the

effectsof precessionandnutation. Therewasnodiscernibleeffectdueto theinclusion

of polarmotionto themodel.

6.3 The Effects of Solid Earth Tides

The Earth is not rigid, and will deform because of the gravitational attractions of

the Sun and the Moon. The amplitude of the solid surface deformation can be as high

as 1/3 meters [Siry, 1973]. The Earth's geopotential will be altered due to the

deformation and can be expressed as:

OO

AU(r) =nE2kn (adr) zn+l Vn(r)

where AU(r) is the change in the geopotential field at position r, kn is the Love numbers

of degree n, ae is the mean equatorial radius, and Vn is the potential due to the solid

Earth tides [Shum, 1982]. The Love parameters are an indication of the Earth's

deformation properties. The solid Earth tide model employed by UTOPIA uses the

equations for the changes in the geopotential coefficients due to the tidal effects

provided by the MERIT Standards [1983]. The MERIT Standards uses Wahr's theory

to model the Earth tides, which uses the 1066a Earth model of Gilbert and Dziewonski

[1975].
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The errors in the relative range-ratedue to the solid Earth tidesgrow to an

amplitudeof 240 [.tm/sin 32siderealdays(Figure6.3). Consequently,themagnitude

of thedifferencesin therelativerange-rateindicatethatthesolidEarthtideswill havea

significanteffecton thesatellites'motionandmustbemodeled.

6.4 Effects of the Ocean Tides

The models for the solid Earth and the ocean tides are treated separately. The

lunar and solar gravitational attraction on the oceans considers the Sun and the Moon to

be point masses [Torge, 1980]. The ocean tide model used in UTOPIA is based on the

Schwiderski tide model [1980], which contains a 1° x 1° grid of the amplitudes and

phase angles for nine of the ocean tide constituents: M2, $2, N2, K2, K1, O1, P1, Q,

and Mf [Eanes, Schutz and Tapley, 1983]. The ocean tide effects are computed by

summing over the constituents listed above. Values for the amplitudes and phases for

each constituent are tabulated in the MERIT Standards [1983]. The Schwiderski tide

model along with modifications to account for the effects of the atmosphere, and the

expressions for the variations in the geopotential coefficients used by UTOPIA are

provided by Eanes, et al. [1983].

The potential due to the ocean tides contains a 14 day period due to the Moon

and a 180 day period due to the Sun. The 14 day period can be seen in the relative

range-rate plot of the ocean tidal effects (Figure 6.4). The tidal potential also contains

short periods of diurnal and semidiurnal lengths [Torge, 1980]. The change in the

ocean's mass distribution generates an effect on the two satellites' relative range-rate,
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theamplitudeof whichgrowsto -+60p.m/sin 32siderealdays.

A studyof theoceansurfacevariability effects,suchaseddies,on thesatellites'

relativerange-ratewasmadebyMcNamee [1986]. This study concluded that the ocean

currents will affect the satellites' motion to a maximum value of 20 grn/sec which is

above the -+1 I.tm/sec level, and therefore, will also need to be considered.

6.5 Planetary Effects

The gravitational effect of the all the planets (Figure 6.5a) on the GRM satellite

motion was considered. Of all the planets, Jupiter caused the largest change in the

relative range-rate (Figure 6.5b). The planets were assumed to be point masses in the

force model. The perturbation to the two-body force for N-bodies is given as:

I1

F = - I; GMi ( A .JAi3 - ri/ri 3 ) (6.1)
i=l

where F is the force on the satellite due to the body Mi, M is the mass of the Earth, A i

is the vector from the perturbing body to the satellite, and ri is the vector from the

perturbing body to the Earth. The UTOPIA software uses a planetary ephermerides

that provides the values for A i [Shum, 1982]. The ephermerides for the planets, as

well as the Sun and the Moon, are from the Jet Propulsion Laboratory DE-200

[Standish, 1982].

A tabulation of the angle and the distance of the planets from the Earth is

provided in Table 6.1, as given by the Astronomical Almanac for the January 1, 1984,
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epochdate. This table providesthe initial locationsof theplanetsin a heliocentric

coordinatesystemwhich enablesanapproximatedeterminationof therelative location

to theEarth. Clearly,thecloseraplanetis to theEarth,thelargeritsdirecteffecton the

satellite'smotion canbe, but the actualmagnitudeis also dependenton the planets

mass.

Table6.1

Heliocentriccoordinatesfor theplanets

January1, 1984

Planet longitude (o) latitude (o) distance from sun (AU)

Mercury 97.05 5.17 0.310727

Venus 178.41 3.19 0.'719986

Earth 302.55 18.94 0.98400

Mars 169.45 1.35 1.66087

Jupiter 263.22 0.22 5.28589

Saturn 219.12 2.23 9.83198

6.6 Luni-Solar Effects

The initial configuration of the Sun and the Moon relative to the orbit plane of

the GRM satellites will be a significant factor and will influence the overall magnitude

of the range-rate. The forces due to the Sun and the Moon are also described by

Equation (6.1), where the Sun and Moon are taken as the perturbing bodies. The

effects of the Sun and the Moon on the relative range-rate were investigated separately
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andalsocombined.

The largest, single temporal perturbation on the satellites relative range-rate is

due to the Moon (Fig 6.6a). In the formulation used, the Moon is assumed to be a

point mass. Since the simulation to determine the Moon's effect is 32 days, the

satellites are exposed to an entire revolution of the Moon about the Earth. The

maximum perturbation encountered in this simulation occurred when the Moon is near

the inertial Y-axis.

The solar effects on the relative range-rate are presented in Figure 6.6b. Like

the Moon, the Sun has its greatest affect when the Sun is along the inertial Y-axis.

Since the mission is to last six months, this configuration will be encountered at least

once, and perhaps twice. For the January 1 epoch date, the Sun is initially near the

longitude of 279 °, which is very close to the negative Y-axis. It is possible to decrease

the effect the Sun will have on the orbital motion of the satellites by permitting the Sun

to be on the Y-axis only once. This can be achieved by beginning the mission in March

or September.

The effects of the Moon and the Sun are combined to be the luni-solar effect

(Figure 6.6c). In a paper by Estes and Lancaster [1976b], it was stated that the luni-

solar effects can be minimized by placing the satellites in a orbit plane that is

perpendicular to both the ecliptic plane and to the equatorial plane. The orbit plane that

satisfies both of these criteria is the plane that is perpendicular to the vernal equinox (the

X-axis) which is the Y-Z plane. The GRM satellites are initially in the Y-Z plane,

therefore, in the plane of minimum luni-solar effect. This plane should precess at the
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ratethevernalequinoxprecesses(360°/26000years),butsincethemissionis only six

monthslongandthisrateis smaUandcanbeneglected.

Theperturbationsof theMoon'seffecton theEarth'soblatenesswereincluded

in this section. The force equationis provided by Equation (6.1), except that the

indirect term in the force equation, ri/ri3, is replacedby the indirect effect due to

oblateness,VU(ri)/(GM) [Moyer, 1971] where VU(r) is the gradient of the Earth

geopotential field with respect to ri, the distant from the Moon to the Earth. The relative

range-rate plot (Figure 6.6d) contains a periodic effect whose magnitude remains under

the +1 l.tm/s level. Since there appears to be no secular growth in the amplitude over

time, this effect on the satellites' motion can be excluded from the dynamic model.

6.7 Relativistic Effects

The model used in UTOPIA to calculate the relativistic effects on a satellite's

motion assumes that the spacecraft is a massless particle revolving around a point mass

[Moyer, 1971]. The dominant effect of relativity is the effect on the motion of perigee.

Because of the low altitude of the satellites in this mission, the relativistic effects on the

satellites' motion were expected to be significant. Using mean orbital elements, the

perigee advance rate is approximately 0.0633°/day. According to general relativity, the

contribution of the relativistic perturbation to the equations of motion is:

i:=4lJ/(c2r3) { [la/r-i'-f] r+(r./') i'}

where c is the speed of light in a vacuum, Ix is the gravity parameter of the Earth, r is
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Figure 6.7 illustrates that the relativistic effects influence the satellites' relative

range-rate above the ±1 Ilrn/s level. The amplitude of the relativistic effects increases to

±16 _tm/s in 32 sidereal days, indicating that the Newtonian model is insufficient to

model the acceleration of these satellites.

6.8 Effects of the Perturbations on the Initial Conditions

The results of the combination of all the major temporal effects on the relative

range-rate are illustrated in Figure 6.8a; the Moon's effect on the Earth oblateness and

all the planets, except for Jupiter, were excluded from the model. The relative motion

plots are provided in Figures 6.8b and 6.8c. The relative range (Figure 6.8b) indicates

that a drift between the satellites of 10.95 m/day has been incurred due to the additional

forces. The satellites' groundtrack repeat has also been affected; primarily, the

longitudes of the two satellites was west of the 32 sidereal day closure point. For the

nominal case, the two satellites had a groundtrack closure of within 100 meters; with

the temporal perturbations, the satellites close to within four kilometers.

A correction to the nominal initial conditions was made using the technique

described in Chapter 4. However, this is a linear technique and is not completely suited

for these temporal perturbations. From Table 4.1, if there is a total error in latitude of

0.002 °, then the drift rate should be approximately 3.5 m/day. Also, the error in

longitude is predicted to be negligible. This is not the case with the temporal effects.

Instead, with the same error in latitude the drift rate was almost three times greater, and
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theerrorin longitudewascloseto 0.2° for eachsatellite. Thecorrectionfor the initial

conditionsthat will result in a moreaccurategroundtrackclosurehadto beobtained

iteratively,thatis, correctionsto theinitial conditionsweredeterminedandtheresulting

closuresanddrift rate were calculated. If theseconditionswerenot acceptable,the

procedurewasperformedagain. Nutation is thecauseof the nonlinearity,sincethe

coordinatesystemwill nutatenearlytwodegreesin 32siderealdays.

After twoiterations,thefinal valuesfor latitudewereequalto the initial values.

Thecorrectionsto the initial conditionswere0.3544676m for the leadingsatelliteand

0.3117409rnfor thetrailing satellite,both in thenegativez direction. Longitudewas

still westof its desiredvaluebutcloserto anexactrepeat.Thedrift ratewasreducedto

1.44m/dayandtheclosurewasunderthreekilometersdueto theremaininglongitude

error. The relative motion is illustrated in Figures 6.9aand 6.9b. In addition, the

combinedeffectof all thetemporalperturbationwith the new initial conditionswas

determined(Figure6.9c). Therewasnodiscernibleimprovementin therelativerange-

rate;that is, changingtheinitial condition slightlydoesnot seemto significantly alter

theperturbationeffectsonthesatellites'relativemotion.

6.9 Effect of the Perturbations on the Frozen Orbit

An investigation of the perturbation effects on the character of the frozen orbit

was considered. Figures 6.10a and Figure 6.10b indicate that the perturbed orbits will

remain frozen since the phase plane diagram and the eccentricity versus the argument of

perigee were within the same patterns of the unperturbed 9 x 9 geopotential field frozen

orbit (Figures 3.4a and 3.4b). The frozen orbit characteristics were not significantly
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influencedby thetemporalperturbationsinvestigatedin thisstudy.

Theluni-solar effectson the frozenorbit wereinvestigatedfor the proposed,

Navy satellite NROSS [Cefola, et al., 1986] and for SEASAT [Nickerson, et al.,

1978]. Their results indicated that the luni-solar effects do not alter the frozen orbit, at

least for the time period considered. These studies were made on satellites with much

higher altitudes than is planned for GRM, indicating that the luni-solar effects should

not interfere with the GRM frozen orbit characteristics as was illustrated in Figure 6.10.

6.10 Summary

With the accuracy levels required of this mission, the dynamical model will

need to be detailed and complete. Any perturbations to the satellites' orbits that could

alter the relative range-rate will have to be accounted for in the modeling in order to

correctly identify the geopotential field. In some cases, for instance ocean tides, an

error in the model of only 10% may produce signals exceeding the measurement

precision which would be detrimental to the recovery the the Earth's gravity field.
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CHAPTER 7

CONCLUSIONS AND SUMMARY

This study concentrated on the pre-mission and post-mission phases of the

proposed Geopotential Research Mission. The pre-mission phase determined a strategy

for calculating a set of initial conditions which required an entire repeat cycle that met

the mission specifications of a frozen, polar orbit with repeating groundtracks for both

satellites. Corrections to the initial conditions were determined using the same strategy

after only one week of mission time with little loss of accuracy. The post-mission

phase determined a nominal set of initial conditions along with a reduced geopotential

field to produce an orbit that satisfied the mission requirements for orbit accuracy.

7.1 Summary

The definition and usefulness of a frozen orbit was discussed in Chapter 3. For

a polar, frozen orbit, the mean argument of perigee location is a constant. It was

demonstrated that frozen orbits can maintain a repeating groundtrack more easily than a

non-frozen orbit. Once obtained, the frozen orbit configuration is very stable, and

perturbations as large as 1000 meters in the orbit position did not destroy the integrity

of the orbit's characteristics.

192



193

A strategyfor determiningasetof initial conditionswasdescribedin Chapter4.

Oncea setof initial conditionsmetthecriteriafor afrozenorbit,anadjustmentbasedon

a linear calculation to theseinitial conditions will allow them to have a repeating

groundtrackafter thespecifiednumberof days. Theadjustmentsneededin the initial

conditions were independentof the geopotentialfield that influenced the satellites'

motion. Two methodswereprovided,onethatrequiredtheentirerepeatcycle (in this

study,32siderealdays)to determinetheproperadjustments,andanotherthat useda

maximumof only oneweekof missiontime. Thesensitivityof theinitial conditionsto

orbit insertionerrorsandtherangeof linearreliabilitywasalsoinvestigated.

A simulationof the satelliteswasperformedandtheresultsof this simulation

were discussed in Chapter 5. The simulation used an Ohio State University

geopotentialfield, which consistedof a 180x 180field pluscoefficientsto degree300

andup to order 10 [Rapp, 1981]. The simulationshowedthat the satellites'relative

motionwashighly influencedby certainresonantterms,particularlyorders82,33,49,

164,16,and17. Theephermeridesof eachsatellitewereusedasa setof observations

to simulatethe orbit determinationprocess. To reducethe difference betweenthe

observationsandthenominaltrajectorybasedon theGEM10B geopotentialfield, the

f'_rsttwo pairs of eachof theresonantcoefficientsplus the zonalharmonicsJ2andJ3

wereestimated.With thisnominalgeopotentialfield, thenominalorbit accuracywas

reducedto satisfythegravitymissionspecifications.

Chapter6 provided a study of perturbation effects. The effects chosen for this

investigation were: precession, nutation, and polar motion, planetary, luni-solar,

relativity, solid Earth tides, and ocean tides. Except for polar motion, these
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perturbationswereshownto influencethesatellites'relativerangeratein excessof the

±1I.tm/srequirement,andtherefore,mustbeaccountedfor in themodelingprocess.

This studyhasbeenbasedon anepochdateof January1, 1984. A different

initial epochor differentmissionrequirements,suchasgroundtrackrepeatfrequencyor

separationdistance,will require a different set of initial conditions.However, the

procedureprovidedin Chapter4 to obtaintheinitial conditionsremainsvalid regardless

of thefinal missionrequirements.Someof theresults,suchasin thetemporaleffects

on thesatellites'relativemotion (Chapter6), will dependupontheepochdateselected.

In addition to theepochdate,theresultsfrom the simulationaredependentuponthe

geopotentialfield usedto generatethesatellites'trajectories.Another simulationwill

requireadifferentnominaltrajectorythatwill meetthemissionresidualrequirements.

Also, additional harmonic terms may needto be included in the nominal model.

However,therelativepowerof theresonancetermsshouldremainaspresentedfor the

samesatellitealtitudeof 160km thatwasselectedfor this study.

7.2 Additional Research

Additional studies proposed for the Geopotential Research Mission include the

following:

Expanding the geopotential field to a full 360 x 360 field for the simulation.

Some of this work has already been done and the results of this larger

simulation were partially discussed in Chapter 5.
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0 A study of the atmospheric effects on the outer shell, and the manner in which

thrusts associated with the compensations for the nongravitational force

influences the satellites' relative motion.

An investigation of tracking systems, such as TRANET and GPS and their

ability to provide a sufficiently precise determination of the orbits.

The investigation of techniques for the recovery of the coefficients of the

geopotential field with simulated data.

A simulation of only one satellite equipped with a gravity gradiometer instead of

the dual satellite configuration to be used to recover the geopotential field.



APPENDIXA

Lagrange'sPlanetaryequationsfor themodifiedsetof orbit elements described

in Chapter 3 are as follows [Taft, 1978]:

_i = 2 (a/t.01/2 c_R/c_(_

fl = (l-e2)/L _R/_ - _coti/L 3R/Oi - rl(1-e2)/L[l+(1-e2)lt2]_R/_¢s

= -(1-e2)/L 8R/_)rl + rl coti/L 8R/8i - _(1-e2)/L[l+(1-e2)lt2]SR/8o

di/dt = L'l[coff (_ _R/_q - 1'!_R/O_ + _R/_cr) - cos/_R/_f/]

= csci/L DR/Oi

= (1-e2)/L [l+(1-e2) lt2] (rl3R/_rl+_R/_) - 2(a/I.t)ll2_R/_a - cot//L _R/_i

where

L2=lm(1-e 2)

Disturbing function, R, used includes J2, J3, J5, J7, and J9 only.

R = VSp + VIA, + VSEC
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Shortperiodcontributionto thedisturbingfunction:

Vsp = -3 gae2/a 3 J2[sin2i(7/8_coso_ + 5/8rlsinot - 7/8(_cos3ot +

rlsin3o0- 1/4cos2o0- l/2(_cosot + rlsimz)]

where o_=M+o_

o = co + ntp

Long period contribution to the disturbing function [Kaula, 1966]:

VLp = -3/2 (la]a3) 1/2 (ae/a) 31"1sin/{J3 ( 1-5/4sin2i )" 5/2 J5 (ae/a) 2 (17/2sin2i+21/8sinai)

+ 35/8 J7 (ae]a) 4 ( 1-27/4sin2i + 99/8sin4i - 429/64sin6i) - 105/16 J9 (ae/a)6 (1 -

1 lsin2i + 143/4sin4i - 715/16sin6i + 2431/128sinSi)}

Secular contributions to the disturbing function:

VSEC = "J2 I"t ae 3/a3 (3/4sin2i - 1/2) / (l-e2) 3/2

Cook's analysis excluded the Short period contributions to the disturbing

function, Vsp. By excluding the short period term, Cook was able to find a analytic

solution to the equations of motion for _ and rl. For Cook's solution OR/_a is zero.
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FromCook's [1966] solution:

= A cos ( kt + a )

= A sin ( kt + ot ) + C/k

where

C = VLp [ TI

k = 3 (g/a3) 1/2 J2 (ae/a) 2 (1-5/4sin2i) -

5 (IA]a3) 1/2 J4 (ae/a) 4 (105/64 sin4i - 15/8 sin2i + 3/8)

Note that:

e = (_2 + rl2)a/2

co = tanq(ri / _)



APPENDIX B

ProgramFIXDRF calculatesthe correctionneededin eachof the satellite's

initial conditionsthatwill eliminatethedrift betweenthesatellitesandthatwill insurea

closureof within onemeter.

PROGRAM FIXDRF ( INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT )

THIS PROGRAM FIXES THE DRIFT BETWEEN TWO SATELLITES GIVEN THE

GRAVITY PARAMETER GM, AND THE MEAN EARTH RADIUS AE. FIRST ORDER

ASSUMPTION ONLY, NO GRAVITY COEFFIECIENTS ARE INCLUDED. THE ORBIT

HAS TO BE NEARLY CIRCULAR AND POLAR. ADJUSTMENT IS IN THE Z POSITION.

REAL NBAR, MU, J2, NRATE

COMMON / CHANGE / DLONGI, DLONG2, DLATI, DLAT2

MEAN ORBITAL ELEMENTS

A = 6523600.233433

E = .00153496544

J2 = .00108262808458

AE = 6378137.

MU = 3.9860044E14

NBAR = SQRT ( MU / A**3 )

NRATE = ( A * ( I.- E**2)/AE ) **2 * 2./3./ ( NBAR * J2 )

LATITUDES OF EACH SATELLITE INITIAL AND FINAL

PHI1 = 88.688

PHIIF = 87.3059

PHI2 = 88.69072

PHI2F = 89.87647

IF DLAT IS GREATER THAN 0 SAT IS BEHIND

IF DLAT IS LESS THAN 0 SAT IS AHEAD

CHANGE IN LATITUDES

DLATI = PHIIF - PHI1

DLATI = .015

DLAT2 = PHI2 - PHI2F

DLAT2 = .003

WRITE(6,220)

WRITE(6,200) DLATI, DLAT2

RADIUS

R = A

DRIFT RATE IN METERS PER DAY

DR = 9.6469
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C

I0

CHANGE IN MEAN MOTION IN RADIANS PER SECOND

DN = DR / (R * 86400.)

WRITE(6,140)

WRITE(6,100) DN

CHANGE IN Z POSITION IN METERS DUE TO DRIFT

DZ = DN * ( 2./3. ) * A / NBAR

WRITE(6,150)

WRITE(6,100) DZ

CALCULATE CHANGE IN TWO SATELIITES Z POSITIONS TO ADJUST LATITUDE

CHANGE IN LATITUDE POSSIBLE DUE TO DRIFT RATE

DLAT = DN * 2757250.896 * 57.29577951

WRITE(6,100) DLAT

CALL DRFADJ ( DLATI, DLAT2, DLAT, DZ, DZI, DZ2 )

WRITE(6,250)

WRITE(6,200) DZI, DZ2

STOP

100 FORMAT ( 5X,EI4.7 )

140 FORMAT ( 5X, ' CHANGE IN MEAN MOTION ' )

150 FORMAT( 5X, 'CHANGE IN Z DUE TO DRIFT' )

200 FORMAT ( 5X, 2E14.7)

220 FORMAT ( 5X, ' CHANGE IN LATITUDE ' )

230 FORMAT ( 5X, ' CHANGE IN LONGITUDE ' )

250 FORMAT ( 5X, ' CHANGE IN Z FOR EACH SATELLITE '

300 FORMAT(5X,6E21.13,/,5X,6E21.13)

END

2O

SUBROUTINE DRFADJ ( DLATI, DLAT2, DLAT, DZ, DZI, DZ2 )

KFLAG = 1

Q = -.5

IF ( DLATI .GE. 0. ) Q = .5

DZl = O.

DZ2 = 0.

IF(ABS(DLAT2) .GT. ABS(DLATI)) KFLAG = -i

IF ( KFLAG .EQ. 1 ) GO TO i0

DLAT2 = ABS(DLAT2) - ABS(DLAT)

DLAT2 = ABS(DLAT2)

DZ2 = ABS(DZ)

GO TO 20

DLATI = ABS(DLATI) - ABS(DLAT)

DLATI = ABS(DLATI)

DZI = ABS(DZ)

CONTINUE

DELAT = DLAT2

IF ( DLAT2 .GT. DLATI ) DELAT = DLATI

DZl = Q * ( DZ * DELAT / DLAT + DZl )

DZ2 = Q * ( DZ * DELAT / DLAT + DZ2 )

RETURN

END
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